Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
11 мая 2023 17:08
208
Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 15 км/ч, а вторую половину пути проехал со скоростью на 36 км/ч больше скорости первого, в результате чего прибыл в В одновре- менно с первым автомобилистом. Найдите скорость первого автомобили- ста.
1
ответ
Обозначим скорость первого автомобилиста через $v$ (км/ч). Тогда расстояние между городами $AB$ равно $d = vt$, где $t$ - время в пути первого автомобилиста.
Второй автомобилист проехал первую половину пути со скоростью 15 км/ч, то есть он потратил на нее время $t_1 = \frac{d}{2 \cdot 15} = \frac{d}{30}$. Оставшуюся половину пути он проехал со скоростью $v+36$ км/ч, и на нее у него ушло время $t_2 = \frac{d}{2 \cdot (v+36)} = \frac{d}{2v+72}$.
Общее время в пути второго автомобилиста также равно $t_1 + t_2 = \frac{d}{30} + \frac{d}{2v+72}$.
Так как оба автомобилиста прибыли в город $B$ одновременно, то время их пути должно быть одинаковым: $t = t_1 + t_2$.
Подставим выражения для $t_1$ и $t_2$ и приравняем их к $t$:
$$\frac{d}{30} + \frac{d}{2v+72} = \frac{d}{v}$$
Упростим выражение, умножив обе части на $30v(v+36)$:
$$d(v+36) + \frac{d}{2} = 15vd$$
$$36d = 13vd$$
$$v = \frac{36}{13} \approx 2.77 \text{ км/ч}$$
Ответ: скорость первого автомобилиста равна примерно 2.77 км/ч.
Второй автомобилист проехал первую половину пути со скоростью 15 км/ч, то есть он потратил на нее время $t_1 = \frac{d}{2 \cdot 15} = \frac{d}{30}$. Оставшуюся половину пути он проехал со скоростью $v+36$ км/ч, и на нее у него ушло время $t_2 = \frac{d}{2 \cdot (v+36)} = \frac{d}{2v+72}$.
Общее время в пути второго автомобилиста также равно $t_1 + t_2 = \frac{d}{30} + \frac{d}{2v+72}$.
Так как оба автомобилиста прибыли в город $B$ одновременно, то время их пути должно быть одинаковым: $t = t_1 + t_2$.
Подставим выражения для $t_1$ и $t_2$ и приравняем их к $t$:
$$\frac{d}{30} + \frac{d}{2v+72} = \frac{d}{v}$$
Упростим выражение, умножив обе части на $30v(v+36)$:
$$d(v+36) + \frac{d}{2} = 15vd$$
$$36d = 13vd$$
$$v = \frac{36}{13} \approx 2.77 \text{ км/ч}$$
Ответ: скорость первого автомобилиста равна примерно 2.77 км/ч.
0
·
Хороший ответ
11 мая 2023 17:57
Остались вопросы?
Еще вопросы по категории Математика
11. Длина детали на чертеже, сделанном в масштабе 1:15, равна 9 см. Чему будет равна длина этой детали на другом чертеже, сделанном В масштабе 1:4? ПО...
Какой результат возведения числа 1 в 10 степень?...
Помогите пожалуйста быстро класс 3 часть 3 страница 76 номер 5 а) реши задачу математика...
Чему равен cos90 градусов напишите пожалуйста...
Какое число получится, если разделить 10 корней из 2 на 5?...
Все предметы