Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
11 мая 2023 17:08
218
Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 15 км/ч, а вторую половину пути проехал со скоростью на 36 км/ч больше скорости первого, в результате чего прибыл в В одновре- менно с первым автомобилистом. Найдите скорость первого автомобили- ста.
1
ответ
Обозначим скорость первого автомобилиста через $v$ (км/ч). Тогда расстояние между городами $AB$ равно $d = vt$, где $t$ - время в пути первого автомобилиста.
Второй автомобилист проехал первую половину пути со скоростью 15 км/ч, то есть он потратил на нее время $t_1 = \frac{d}{2 \cdot 15} = \frac{d}{30}$. Оставшуюся половину пути он проехал со скоростью $v+36$ км/ч, и на нее у него ушло время $t_2 = \frac{d}{2 \cdot (v+36)} = \frac{d}{2v+72}$.
Общее время в пути второго автомобилиста также равно $t_1 + t_2 = \frac{d}{30} + \frac{d}{2v+72}$.
Так как оба автомобилиста прибыли в город $B$ одновременно, то время их пути должно быть одинаковым: $t = t_1 + t_2$.
Подставим выражения для $t_1$ и $t_2$ и приравняем их к $t$:
$$\frac{d}{30} + \frac{d}{2v+72} = \frac{d}{v}$$
Упростим выражение, умножив обе части на $30v(v+36)$:
$$d(v+36) + \frac{d}{2} = 15vd$$
$$36d = 13vd$$
$$v = \frac{36}{13} \approx 2.77 \text{ км/ч}$$
Ответ: скорость первого автомобилиста равна примерно 2.77 км/ч.
Второй автомобилист проехал первую половину пути со скоростью 15 км/ч, то есть он потратил на нее время $t_1 = \frac{d}{2 \cdot 15} = \frac{d}{30}$. Оставшуюся половину пути он проехал со скоростью $v+36$ км/ч, и на нее у него ушло время $t_2 = \frac{d}{2 \cdot (v+36)} = \frac{d}{2v+72}$.
Общее время в пути второго автомобилиста также равно $t_1 + t_2 = \frac{d}{30} + \frac{d}{2v+72}$.
Так как оба автомобилиста прибыли в город $B$ одновременно, то время их пути должно быть одинаковым: $t = t_1 + t_2$.
Подставим выражения для $t_1$ и $t_2$ и приравняем их к $t$:
$$\frac{d}{30} + \frac{d}{2v+72} = \frac{d}{v}$$
Упростим выражение, умножив обе части на $30v(v+36)$:
$$d(v+36) + \frac{d}{2} = 15vd$$
$$36d = 13vd$$
$$v = \frac{36}{13} \approx 2.77 \text{ км/ч}$$
Ответ: скорость первого автомобилиста равна примерно 2.77 км/ч.
0
·
Хороший ответ
11 мая 2023 17:57
Остались вопросы?
Еще вопросы по категории Математика
В треугольнике АВС ∠С = 90 °. СС1 - высота, СС1 = 5 см, ВС = 10 см. Найдите ∠САВ....
Как называется знак больше или меньше...
Какие печатные буквы русского алфавита имеют вертикальную и горизонтальную оси симметрии...
Володя поймал 4 окуня и 3 леща. Сколько всего рыб он поймал? Реши задачу. Составь две задачи , обратной данной , и реши их....
Изяслав составляет 5 буквенные слова, в которых есть только буквы И, З, Я, С, Л, А, В, причем в каждом слове есть хотя бы одна гласная буква(И,Я или А...
Все предметы