Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
11 мая 2023 17:08
314
Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 15 км/ч, а вторую половину пути проехал со скоростью на 36 км/ч больше скорости первого, в результате чего прибыл в В одновре- менно с первым автомобилистом. Найдите скорость первого автомобили- ста.
1
ответ
Обозначим скорость первого автомобилиста через $v$ (км/ч). Тогда расстояние между городами $AB$ равно $d = vt$, где $t$ - время в пути первого автомобилиста.
Второй автомобилист проехал первую половину пути со скоростью 15 км/ч, то есть он потратил на нее время $t_1 = \frac{d}{2 \cdot 15} = \frac{d}{30}$. Оставшуюся половину пути он проехал со скоростью $v+36$ км/ч, и на нее у него ушло время $t_2 = \frac{d}{2 \cdot (v+36)} = \frac{d}{2v+72}$.
Общее время в пути второго автомобилиста также равно $t_1 + t_2 = \frac{d}{30} + \frac{d}{2v+72}$.
Так как оба автомобилиста прибыли в город $B$ одновременно, то время их пути должно быть одинаковым: $t = t_1 + t_2$.
Подставим выражения для $t_1$ и $t_2$ и приравняем их к $t$:
$$\frac{d}{30} + \frac{d}{2v+72} = \frac{d}{v}$$
Упростим выражение, умножив обе части на $30v(v+36)$:
$$d(v+36) + \frac{d}{2} = 15vd$$
$$36d = 13vd$$
$$v = \frac{36}{13} \approx 2.77 \text{ км/ч}$$
Ответ: скорость первого автомобилиста равна примерно 2.77 км/ч.
Второй автомобилист проехал первую половину пути со скоростью 15 км/ч, то есть он потратил на нее время $t_1 = \frac{d}{2 \cdot 15} = \frac{d}{30}$. Оставшуюся половину пути он проехал со скоростью $v+36$ км/ч, и на нее у него ушло время $t_2 = \frac{d}{2 \cdot (v+36)} = \frac{d}{2v+72}$.
Общее время в пути второго автомобилиста также равно $t_1 + t_2 = \frac{d}{30} + \frac{d}{2v+72}$.
Так как оба автомобилиста прибыли в город $B$ одновременно, то время их пути должно быть одинаковым: $t = t_1 + t_2$.
Подставим выражения для $t_1$ и $t_2$ и приравняем их к $t$:
$$\frac{d}{30} + \frac{d}{2v+72} = \frac{d}{v}$$
Упростим выражение, умножив обе части на $30v(v+36)$:
$$d(v+36) + \frac{d}{2} = 15vd$$
$$36d = 13vd$$
$$v = \frac{36}{13} \approx 2.77 \text{ км/ч}$$
Ответ: скорость первого автомобилиста равна примерно 2.77 км/ч.
0
·
Хороший ответ
11 мая 2023 17:57
Остались вопросы?
Еще вопросы по категории Математика
Чему равно 0 в 8 степени?...
сделайте развертку прямоугольного параллепипеда если a=3см,b=4см,c=5 см.Площадь не нужна!Нужен рисунок с этими данными...
Железнодорожный билет для взрослого стоит 720р. Стоимость билета школьника составляет половину стоимости взрослого. Сколько надо заплатить что провезт...
Какую дробь нужно записать, чтобы получить число 0.3?...
Что означает выражение '1 тонна в 1000 раз больше'?...