Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
13 мая 2023 13:53
663
Основание прямоугольного параллелепипеда ABCDA1B1C1D1 — квадрат ABCD. Постройте прямую, проходящую через точку A и перпендикулярную плоскости BB1D.
Выполните построение, проведите доказательство.
1
ответ
1. Постройте проекции точки A на плоскости BB1D и на плоскость, перпендикулярную BB1D. Обозначим эти точки как A' и A'' соответственно.
2. Проведите прямую AA', которая лежит в плоскости BB1D.
3. Найдите середину отрезка AA', обозначим ее как M.
4. Проведите прямую, проходящую через точки M и A''.
5. Докажем, что эта прямая перпендикулярна плоскости BB1D. Для этого рассмотрим произвольную точку P на прямой MA''. Также рассмотрим проекции этой точки на плоскости BB1D и на плоскость, перпендикулярную BB1D. Обозначим эти точки как P' и P'' соответственно. Так как точка P лежит на прямой MA'', то ее проекции P' и P'' лежат на соответствующих плоскостях. Также, так как точка A'' лежит на плоскости, перпендикулярной BB1D, то отрезок A''P'' перпендикулярен этой плоскости. Значит, отрезок MP' перпендикулярен плоскости BB1D. Так как точка P была выбрана произвольно, то прямая MA'' перпендикулярна плоскости BB1D.
6. Получили, что прямая, проходящая через точки A и M, перпендикулярна плоскости BB1D. Она и является искомой прямой.
2. Проведите прямую AA', которая лежит в плоскости BB1D.
3. Найдите середину отрезка AA', обозначим ее как M.
4. Проведите прямую, проходящую через точки M и A''.
5. Докажем, что эта прямая перпендикулярна плоскости BB1D. Для этого рассмотрим произвольную точку P на прямой MA''. Также рассмотрим проекции этой точки на плоскости BB1D и на плоскость, перпендикулярную BB1D. Обозначим эти точки как P' и P'' соответственно. Так как точка P лежит на прямой MA'', то ее проекции P' и P'' лежат на соответствующих плоскостях. Также, так как точка A'' лежит на плоскости, перпендикулярной BB1D, то отрезок A''P'' перпендикулярен этой плоскости. Значит, отрезок MP' перпендикулярен плоскости BB1D. Так как точка P была выбрана произвольно, то прямая MA'' перпендикулярна плоскости BB1D.
6. Получили, что прямая, проходящая через точки A и M, перпендикулярна плоскости BB1D. Она и является искомой прямой.
0
·
Хороший ответ
13 мая 2023 13:57
Остались вопросы?
Еще вопросы по категории Математика
Расположи данные площади в порядке возрастания 5кв.м5кв.дм5кв.см555кв.дм; 555000кв.см...
выразите делимое через неполное частное делитель и остаток в виде равенства a=bq+r где a делимое b делитель q неполное частное r остаток 93:16. 340:23...
13 В семи ящиках лежат красные, синие и белые шары. Число синих шаров в каждом ящике равно общему числу белых шаров во всех остальных ящиках. А число...
Какое число нужно возвести в куб, чтобы получить 1331?...
108 номер. Раскройте скобки: 1) 2(х+7) 2)7(5-а) 3)(с-8)*12 4)14(3а-2) 5)8(4а-3b+11с) 6)(6х+4у-2z)*15...