Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
15 мая 2023 16:39
365
Все рёбра правильного тетраэдра, площадь поверхности которого равна 208, уменьшили в 4 раза. Найдите площадь поверхности полученного тетраэдра.
1
ответ
Пусть длина ребра исходного тетраэдра равна $a$, тогда его площадь поверхности равна $S_1 = \sqrt{3}a^2$. Если мы уменьшим все рёбра в 4 раза, то длина каждого ребра нового тетраэдра будет равна $a/2$, а его площадь поверхности будет равна $S_2 = \sqrt{3}(a/2)^2 = \frac{1}{4}S_1$.
Таким образом, площадь поверхности нового тетраэдра равна:
$$S_2 = \frac{1}{4}S_1 = \frac{1}{4}\cdot 208 = \boxed{52}.$$
Таким образом, площадь поверхности нового тетраэдра равна:
$$S_2 = \frac{1}{4}S_1 = \frac{1}{4}\cdot 208 = \boxed{52}.$$
0
·
Хороший ответ
15 мая 2023 16:42
Остались вопросы?
Еще вопросы по категории Математика
Как перевести сантиметры в метры...
известно, что в тетрайдэре rknx: krn 40 nrx 70 krx 50 kr 10см nr 16 см xr 13 см найти ребра основания knc и площади всех граней...
Из города А в город Б по шоссе выехал автобус со скоростью 48 км/ч. За 2 часа автобус проезжает ровно треть расстояния между городами. По этому же шос...
Какое значение имеет 10 в отрицательной третьей степени?...
Какой результат будет при вычислении логарифма по основанию 2 от числа 10?...
Все предметы