Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
15 мая 2023 16:39
513
Все рёбра правильного тетраэдра, площадь поверхности которого равна 208, уменьшили в 4 раза. Найдите площадь поверхности полученного тетраэдра.
1
ответ
Пусть длина ребра исходного тетраэдра равна $a$, тогда его площадь поверхности равна $S_1 = \sqrt{3}a^2$. Если мы уменьшим все рёбра в 4 раза, то длина каждого ребра нового тетраэдра будет равна $a/2$, а его площадь поверхности будет равна $S_2 = \sqrt{3}(a/2)^2 = \frac{1}{4}S_1$.
Таким образом, площадь поверхности нового тетраэдра равна:
$$S_2 = \frac{1}{4}S_1 = \frac{1}{4}\cdot 208 = \boxed{52}.$$
Таким образом, площадь поверхности нового тетраэдра равна:
$$S_2 = \frac{1}{4}S_1 = \frac{1}{4}\cdot 208 = \boxed{52}.$$
0
·
Хороший ответ
15 мая 2023 16:42
Остались вопросы?
Еще вопросы по категории Математика
Найдите допустимые значения выражения: a/a+3 -8...
130*204-168*4-2900 столбиком плиз!...
Как можно упростить сложное предложение?...
Трое ели торт Малыш, Карлсон и Винни-Пух съели торт. Они ели одновременно и каждый ел торт с собственной постоянной скоростью. Малышу досталась только...
Составить уравнение цилиндрической поверхности в случае если направляющая лежит в плоскости OXY и имеет уравнение х²+2ху+3у²-х=0 а образующие параллел...