Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
18 мая 2023 09:38
1882
Прямоугольник разрезали на шесть меньших прямоугольников, площади пяти из них обозначены на рисунке. Найдите площадь оставшегося прямоугольника.
1
ответ
Общая площадь большого прямоугольника равна сумме площадей меньших прямоугольников. Известны площади пяти из шести меньших прямоугольников, значит, чтобы найти площадь оставшегося прямоугольника, нужно вычесть из общей площади площади этих пяти прямоугольников.
Пусть стороны большого прямоугольника равны $a$ и $b$, а стороны меньших прямоугольников, площади которых известны, обозначены на рисунке. Тогда:
- Площадь первого меньшего прямоугольника равна $ab/6$.
- Площадь второго меньшего прямоугольника равна $ab/3$.
- Площадь третьего меньшего прямоугольника равна $ab/6$.
- Площадь четвёртого меньшего прямоугольника равна $ab/4$.
- Площадь пятого меньшего прямоугольника равна $ab/4$.
Общая площадь равна:
$$
ab = \frac{ab}{6} + \frac{ab}{3} + \frac{ab}{6} + \frac{ab}{4} + \frac{ab}{4} + S,
$$
где $S$ - площадь оставшегося прямоугольника.
Сокращая на $ab/3$, получаем:
$$
3 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{S}{ab}.
$$
Сложив дроби, получаем:
$$
\frac{13}{12} + \frac{S}{ab} = 3.
$$
Отсюда находим площадь оставшегося прямоугольника:
$$
S = ab\left(3 - \frac{13}{12}\right) = \frac{ab}{4}.
$$
Ответ: площадь оставшегося прямоугольника равна $ab/4$.
Пусть стороны большого прямоугольника равны $a$ и $b$, а стороны меньших прямоугольников, площади которых известны, обозначены на рисунке. Тогда:
- Площадь первого меньшего прямоугольника равна $ab/6$.
- Площадь второго меньшего прямоугольника равна $ab/3$.
- Площадь третьего меньшего прямоугольника равна $ab/6$.
- Площадь четвёртого меньшего прямоугольника равна $ab/4$.
- Площадь пятого меньшего прямоугольника равна $ab/4$.
Общая площадь равна:
$$
ab = \frac{ab}{6} + \frac{ab}{3} + \frac{ab}{6} + \frac{ab}{4} + \frac{ab}{4} + S,
$$
где $S$ - площадь оставшегося прямоугольника.
Сокращая на $ab/3$, получаем:
$$
3 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{S}{ab}.
$$
Сложив дроби, получаем:
$$
\frac{13}{12} + \frac{S}{ab} = 3.
$$
Отсюда находим площадь оставшегося прямоугольника:
$$
S = ab\left(3 - \frac{13}{12}\right) = \frac{ab}{4}.
$$
Ответ: площадь оставшегося прямоугольника равна $ab/4$.
0
·
Хороший ответ
18 мая 2023 09:39
Остались вопросы?
Еще вопросы по категории Математика
Замените отношение дробных чисел отношением натуральных чисел 4/15 : 9/10...
Какой еще пример можно привести для объяснения 1 закона Ньютона?...
Три подруги решили написать поздравительные открытки к празднику. Они разделили всю работу поровну.Однако Таня нашла себе трёх помощниц,с которыми раз...
Двор состоит из пяти равных квадратов. Определи площадь двора в квадратных метрах, если периметр двора — 4200 см. Рисунок приклеплен...
Что такое конус ? Объясните пожалуйста ....
Все предметы