Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
18 мая 2023 10:17
331
В правильной четырехугольной пирамиде SABCD точка О - центр основания, S - вершина, SB=23, BD=2A-5. Найдите длину отрезка SO.
1
ответ
Для решения задачи нам понадобится теорема Пифагора и свойства центра основания правильной пирамиды.
Согласно свойству центра основания, отрезок SO является медианой треугольника SBD, проходящей через вершину S. Поэтому, мы можем воспользоваться формулой для длины медианы в треугольнике:
SO = 1/2 * sqrt(2*SB^2 + 2*BD^2 - SD^2)
где SD - длина боковой грани пирамиды.
Так как дана правильная пирамида, то все боковые грани равны и подобны, а значит, SD = BD = 2A-5.
Подставляя значения, получаем:
SO = 1/2 * sqrt(2*23^2 + 2*(2A-5)^2 - (2A-5)^2) = 1/2 * sqrt(2*529 + 2*(2A-5)^2 - (2A-5)^2) = 1/2 * sqrt(1058 + 3*(2A-5)^2)
Таким образом, длина отрезка SO равна 1/2 * sqrt(1058 + 3*(2A-5)^2).
Согласно свойству центра основания, отрезок SO является медианой треугольника SBD, проходящей через вершину S. Поэтому, мы можем воспользоваться формулой для длины медианы в треугольнике:
SO = 1/2 * sqrt(2*SB^2 + 2*BD^2 - SD^2)
где SD - длина боковой грани пирамиды.
Так как дана правильная пирамида, то все боковые грани равны и подобны, а значит, SD = BD = 2A-5.
Подставляя значения, получаем:
SO = 1/2 * sqrt(2*23^2 + 2*(2A-5)^2 - (2A-5)^2) = 1/2 * sqrt(2*529 + 2*(2A-5)^2 - (2A-5)^2) = 1/2 * sqrt(1058 + 3*(2A-5)^2)
Таким образом, длина отрезка SO равна 1/2 * sqrt(1058 + 3*(2A-5)^2).
0
·
Хороший ответ
18 мая 2023 10:18
Остались вопросы?
Еще вопросы по категории Математика
На каждом этаже девятиэтажного дома по три квартиры. Номера квартир на седьмом этаже: 127, 128, 129. Назови номера трех квартир на следующем этаже; на...
Задание 1. Ответить письменно на вопросы (стр. 108-109 учебника): 1. Какую фигуру называют прямоугольником? 2 Какую фигуру называют квадратом? 3. Чт...
Запиши ответ Школа закупила 48 учебников по русскому языку и 52 учебника по математике для пятых классов. Общая стоимость покупки составила 36 160 руб...
Помогите пожалуйста СРОЧНО ПРОШУ...
на гранях кубика написаны числа 1,2,3,4,5,6. кубик бросают дважды. первый раз сумма чисел, что выпали на боковых гранях, равна 13, а второй раз - 16....