Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
18 мая 2023 10:40
4400
Дана трапеция ABCD
���� (BC∥AD
��∥��). Точка H
� на стороне AB
�� такова, что ∠DHA=90
∘
∠���=90∘. Известно, что CH=CD=13
��=��=13 и AD=21
��=21.
Найдите длину отрезка BC
��.
1
ответ
Из условия трапеции следует, что $\angle A = \angle B$ и $\angle C = \angle D$. Также из условия $BC \parallel AD$ следует, что $\angle AHD = \angle B$. Рассмотрим прямоугольный треугольник $AHD$. По теореме Пифагора имеем $AH^2 + HD^2 = AD^2$, откуда $AH^2 = 21^2 - 13^2 = 320$ и $AH = \sqrt{320} = 8\sqrt{5}$.
Теперь рассмотрим прямоугольный треугольник $CHD$. По теореме Пифагора имеем $CH^2 + HD^2 = CD^2$, откуда $HD^2 = CD^2 - CH^2 = 13^2 - 13^2 = 0$ и $HD = 0$. Таким образом, точка $H$ является серединой отрезка $CD$.
Так как $H$ является серединой отрезка $CD$, то $BC$ является средней линией в треугольнике $CHD$. Значит, $BC = \frac{1}{2}(CH + CD) = \frac{1}{2}(13 + 13) = 13$.
Ответ: $BC = 13$.
Теперь рассмотрим прямоугольный треугольник $CHD$. По теореме Пифагора имеем $CH^2 + HD^2 = CD^2$, откуда $HD^2 = CD^2 - CH^2 = 13^2 - 13^2 = 0$ и $HD = 0$. Таким образом, точка $H$ является серединой отрезка $CD$.
Так как $H$ является серединой отрезка $CD$, то $BC$ является средней линией в треугольнике $CHD$. Значит, $BC = \frac{1}{2}(CH + CD) = \frac{1}{2}(13 + 13) = 13$.
Ответ: $BC = 13$.
0
·
Хороший ответ
18 мая 2023 10:57
Остались вопросы?
Еще вопросы по категории Математика
Какое число получится, если возвести 10 в 5 степень?...
Что означает выражение '1 2 часа это'?...
В гостинице Гильберт решили сделать уборку у 480 подряд идущих комнат отполировали дверные номера.В результате почистили 2021 цифру.Какой был номер у...
Каков результат вычисления выражения "10cos105 sin15 cos60"?...
Как называется пословица, которая указывает на то, что лучше сделать что-то сразу, не откладывая на потом?...
Все предметы