Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
21 мая 2023 09:00
335
найти производную используя её определение:
f’(x) = 4x/5
1
ответ
Для нахождения производной функции f(x) по её определению, необходимо использовать следующую формулу:
f’(x) = lim(h->0) [f(x + h) - f(x)] / h
В данном случае, функция f(x) = 4x/5, поэтому:
f’(x) = lim(h->0) [(4(x + h)/5) - (4x/5)] / h
f’(x) = lim(h->0) [4x/5 + 4h/5 - 4x/5] / h
f’(x) = lim(h->0) [4h/5] / h
f’(x) = lim(h->0) 4/5
f’(x) = 4/5
Поэтому, производная функции f(x) равна 4/5.
f’(x) = lim(h->0) [f(x + h) - f(x)] / h
В данном случае, функция f(x) = 4x/5, поэтому:
f’(x) = lim(h->0) [(4(x + h)/5) - (4x/5)] / h
f’(x) = lim(h->0) [4x/5 + 4h/5 - 4x/5] / h
f’(x) = lim(h->0) [4h/5] / h
f’(x) = lim(h->0) 4/5
f’(x) = 4/5
Поэтому, производная функции f(x) равна 4/5.
1
·
Хороший ответ
21 мая 2023 09:09
Остались вопросы?
Еще вопросы по категории Математика
Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые п...
Какой результат получится, если разделить 100 на 60?...
Какие предлоги используются для выражения образа действия?...
Какое число получится, если разделить 1 на 5?...
Корень из 7 чему равен,надо в обычной дроби...