Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
21 мая 2023 09:49
225
найти производную используя ее определение:
f(x) = 3x/8 - 26x^2
1
ответ
Для нахождения производной функции f(x) = 3x/8 - 26x^2 по ее определению нужно воспользоваться формулой:
f'(x) = lim(h -> 0) [f(x + h) - f(x)] / h
где lim(h -> 0) обозначает предел при h, стремящемся к нулю.
Применяя эту формулу к данной функции, получим:
f'(x) = lim(h -> 0) [(3(x + h)/8 - 26(x + h)^2) - (3x/8 - 26x^2)] / h
f'(x) = lim(h -> 0) [(3x/8 + 3h/8 - 26x^2 - 52hx - 26h^2) - (3x/8 - 26x^2)] / h
f'(x) = lim(h -> 0) [3h/8 - 52hx - 26h^2] / h
f'(x) = lim(h -> 0) 3/8 - 52x - 26h
Учитывая, что h стремится к нулю, последнее выражение упрощается до:
f'(x) = 3/8 - 52x
Таким образом, производная функции f(x) = 3x/8 - 26x^2 равна f'(x) = 3/8 - 52x.
f'(x) = lim(h -> 0) [f(x + h) - f(x)] / h
где lim(h -> 0) обозначает предел при h, стремящемся к нулю.
Применяя эту формулу к данной функции, получим:
f'(x) = lim(h -> 0) [(3(x + h)/8 - 26(x + h)^2) - (3x/8 - 26x^2)] / h
f'(x) = lim(h -> 0) [(3x/8 + 3h/8 - 26x^2 - 52hx - 26h^2) - (3x/8 - 26x^2)] / h
f'(x) = lim(h -> 0) [3h/8 - 52hx - 26h^2] / h
f'(x) = lim(h -> 0) 3/8 - 52x - 26h
Учитывая, что h стремится к нулю, последнее выражение упрощается до:
f'(x) = 3/8 - 52x
Таким образом, производная функции f(x) = 3x/8 - 26x^2 равна f'(x) = 3/8 - 52x.
0
·
Хороший ответ
21 мая 2023 10:03
Остались вопросы?
Еще вопросы по категории Математика
Задание 2 ABCD-квадрат Для векторов a, b, c. Найдите сумму a+b+c A) AB= AD= CD=c...
Помогите решить: 7-3/4= закончите записи: 5 4\7+8 3\7= 13 7/7= Решите уравнение: 1 2\7 + X=2...
шаг пешехода равен 0,6 м . Сколько шагов ему надо сделать , чтобы преодолеть90 м ? За какое время проедет велосипедист 4,5 км , если будет ехать со ск...
На столе лежат конфеты трех видов:ириски, карамельки и леденцы.Известно, что ирисок на 8 меньше , чем всех остальных конфет, а карамелек-нв 14 меньше,...
Вычислите длину окружности,диаметр которой равен 5,4 дм...
Все предметы