Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
21 мая 2023 10:45
580
Отрезок BM — медиана равнобедренного треугольника ABC (AB=BC). На стороне AB отметили точку К такую, что КМ параллельно BC. Докажите, что BK=КМ.
1
ответ
Поскольку треугольник ABC равнобедренный, то медиана BM является биссектрисой угла ABC и перпендикулярна стороне AC. Также, по условию, KM параллельно стороне BC. Значит, угол BKM равен углу ABC, а угол BMK равен углу BAC (по свойствам параллельных прямых). Таким образом, треугольники BMK и BAC подобны по двум углам, значит, соответствующие стороны пропорциональны.
То есть,
BK/BA = KM/BC
Поскольку AB=BC (треугольник равнобедренный), то
BK/BC = KM/BC
Отсюда следует, что BK=KM.
То есть,
BK/BA = KM/BC
Поскольку AB=BC (треугольник равнобедренный), то
BK/BC = KM/BC
Отсюда следует, что BK=KM.
0
·
Хороший ответ
21 мая 2023 10:48
Остались вопросы?
Еще вопросы по категории Математика
Какова сумма всех чисел в задании?...
Король приказал построить в городе метро причем в нём должно быть 101 линия и любые две станции должны сходиться три линии а больше таких станций быть...
17 см= сколько дм и см...
Что будет, если возвести 10 в четвертую степень?...
Какое число в десятичной системе соответствует числу 102?...
Все предметы