Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Для решения данного интеграла мы можем воспользоваться формулой замены переменной. Пусть u = 3x + 1, тогда du/dx = 3, а dx = du/3. Подставляя это в исходный интеграл, получим:
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
0
·
Хороший ответ
24 мая 2023 18:24
Остались вопросы?
Еще вопросы по категории Математика
Найдите ВЕРНОЕ утверждение: 1) все хорды одной окружности равны между собой; 2) Треугольник со сторонами 1,2,4 не существует; 3) Все углы прямоугольни...
Упростите выражение и укажите его коэффициент 1)3,6*(-5х) 2)10m*(-1,7)*n...
Чему равно выражение 1 в пятой степени?...
Как округлить десятичную дробь до единиц ?...
Какие функциональные группы содержит '1 метил 2 этилбензол'?...
Все предметы