Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения данного интеграла мы можем воспользоваться формулой замены переменной. Пусть u = 3x + 1, тогда du/dx = 3, а dx = du/3. Подставляя это в исходный интеграл, получим:
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
0
·
Хороший ответ
24 мая 2023 18:24
Остались вопросы?
Еще вопросы по категории Математика
Как записать число 1 миллион в научной форме?...
Сколько часов и минут составляет 108 минут?...
Миша с папой решили покататься на колесе обозрения. Всего на колесе шестнадцать кабинок, из них 4 - синие, 6 - зеленые, остальные - красные. Кабинки...
Сравните значение выражений 1)cos 2 и cos2 градусов 2)tg пи и tg3...
Математика Страница 97 номер 3 .Задача 3 класса часть 1...