Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения данного интеграла мы можем воспользоваться формулой замены переменной. Пусть u = 3x + 1, тогда du/dx = 3, а dx = du/3. Подставляя это в исходный интеграл, получим:
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
0
·
Хороший ответ
24 мая 2023 18:24
Остались вопросы?
Еще вопросы по категории Математика
Сколько минут в 1.5 часа?...
Какой квадрат числа равен 1 000 000?...
Какую пословицу с числительным используют для выражения, что четыре глаза видят больше, чем два?...
Какую операцию нужно выполнить с 0 5, чтобы получить число в минус 3 степени?...
Петя говорит Васе : " Я легче тебя в 2 раза" А Вася говорит Пете : " А я тяжелее тебя на 2 кг ". Оба говорят правду. Сколько кг весит Петя?...
Все предметы