Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для решения данного интеграла мы можем воспользоваться формулой замены переменной. Пусть u = 3x + 1, тогда du/dx = 3, а dx = du/3. Подставляя это в исходный интеграл, получим:
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
∫cos(3x+1)dx = ∫cos(u) * (1/3)du = (1/3)sin(u) + C,
где C - произвольная постоянная интегрирования. Подставляя обратно выражение для u, получим:
∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
Ответ: ∫cos(3x+1)dx = (1/3)sin(3x+1/3) + C.
0
·
Хороший ответ
24 мая 2023 18:24
Остались вопросы?
Еще вопросы по категории Математика
Сколько получится 2 в 12 степени минус 2...
Чему равно 1 в квадрате?...
уроки в школе начинаются в 8 ч 30 мин.каждый урок продолжается 45 мин. перемены между вторым и третьим уроками, а также между третьим и четвертым урок...
Какое число повторяется в данном задании?...
прямая параллельная из сторон треугольника отсекает от него треугольник площадь которого в 3 раза меньше площади оставшей части треугольника периметр...