Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
I assume you want me to simplify the expression.
We can start by using the properties of exponents:
((-45)^(2n+1))/((-15)^(2n)*9^n-1)*25^(-k)
= ((-1)^{2n+1} * 3^{2n+1} * 5^{2n+1}) / ((-1)^{2n} * 3^{2n*2} * 3^{-1} * 5^{-k})
= (-3)^{2n+1} * 5^{2n+1} * 5^k / (3^{4n} * 3^{-1} * 5^{-k})
= (-3)^{2n+2} * 5^{3k+1} / 3^{4n+1}
= (-3)^2 * (-3)^{2n} * 5 * 5^k * 5^2 / 3^{4n+1}
= 225 * (-3)^{2n} * 5^{k+2} / 3^{4n+1}
So the simplified expression is 225 * (-3)^{2n} * 5^{k+2} / 3^{4n+1}.
We can start by using the properties of exponents:
((-45)^(2n+1))/((-15)^(2n)*9^n-1)*25^(-k)
= ((-1)^{2n+1} * 3^{2n+1} * 5^{2n+1}) / ((-1)^{2n} * 3^{2n*2} * 3^{-1} * 5^{-k})
= (-3)^{2n+1} * 5^{2n+1} * 5^k / (3^{4n} * 3^{-1} * 5^{-k})
= (-3)^{2n+2} * 5^{3k+1} / 3^{4n+1}
= (-3)^2 * (-3)^{2n} * 5 * 5^k * 5^2 / 3^{4n+1}
= 225 * (-3)^{2n} * 5^{k+2} / 3^{4n+1}
So the simplified expression is 225 * (-3)^{2n} * 5^{k+2} / 3^{4n+1}.
0
·
Хороший ответ
27 мая 2023 12:15
Остались вопросы?
Еще вопросы по категории Математика
Все предметы