Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
30 мая 2023 10:50
569
Составить многочлен наименьшей степени с действительными коэффициентами, имеющий корни a1, а2, а3 определѐнной кратности
а1=2, а2=3-i второй кратности и а3=-i второй кратности
1
ответ
Многочлен наименьшей степени с заданными корнями можно записать в виде произведения линейных множителей, где каждый множитель соответствует одному корню и его кратности. Таким образом, мы получаем:
$(x-a_1)^2(x-a_2)(x-a_3)^2$
Раскрывая скобки, получаем:
$(x-2)^2(x-3+i)(x+i)^2$
Далее, раскрывая скобки еще раз, можно получить многочлен в общем виде:
$x^5 - 10x^4 + 41x^3 - 74x^2 + 60x - 16$
$(x-a_1)^2(x-a_2)(x-a_3)^2$
Раскрывая скобки, получаем:
$(x-2)^2(x-3+i)(x+i)^2$
Далее, раскрывая скобки еще раз, можно получить многочлен в общем виде:
$x^5 - 10x^4 + 41x^3 - 74x^2 + 60x - 16$
1
·
Хороший ответ
30 мая 2023 10:51
Остались вопросы?
Еще вопросы по категории Математика
Что означает число 10 в задании '10 10х10 10 правильный ответ'?...
Какой буквой обозначается длина...
60см это сколько дм?...
Решите уравнение (32+x):16=14...
В фирме такси на данный момент свободно 15 машин: 4 черных , 3 желтых, 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к...
Все предметы