Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
30 мая 2023 10:50
687
Составить многочлен наименьшей степени с действительными коэффициентами, имеющий корни a1, а2, а3 определѐнной кратности
а1=2, а2=3-i второй кратности и а3=-i второй кратности
1
ответ
Многочлен наименьшей степени с заданными корнями можно записать в виде произведения линейных множителей, где каждый множитель соответствует одному корню и его кратности. Таким образом, мы получаем:
$(x-a_1)^2(x-a_2)(x-a_3)^2$
Раскрывая скобки, получаем:
$(x-2)^2(x-3+i)(x+i)^2$
Далее, раскрывая скобки еще раз, можно получить многочлен в общем виде:
$x^5 - 10x^4 + 41x^3 - 74x^2 + 60x - 16$
$(x-a_1)^2(x-a_2)(x-a_3)^2$
Раскрывая скобки, получаем:
$(x-2)^2(x-3+i)(x+i)^2$
Далее, раскрывая скобки еще раз, можно получить многочлен в общем виде:
$x^5 - 10x^4 + 41x^3 - 74x^2 + 60x - 16$
1
·
Хороший ответ
30 мая 2023 10:51
Остались вопросы?
Еще вопросы по категории Математика
Пешехода вышли одновременно навстречу друг другу из пунктов, расстояние между которыми 27 км. Через сколько часов они встретятся, если их скорости рав...
высота ромба на 1,2 см меньше, чем его сторона. периметр ромба равен 24 см. вычисли площадь ромба....
Арифметическая иерархия Конъюнкция сигма1-формулы и пи-1 формулы даст сигма1-формулу или пи-1 формулу или возможно что-то новое? И от чего это зависи...
Чему равно 1 5 в десятичной дроби?...
Какое расстояние пройдено со скоростью 11 км/ч?...