Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
3. Напряженность и потенциал поля объемного заряда. Теорема Остроградского- Гаусса.
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями s1 и s2 (см. рис.). Требуется: 1)используя теорему Остроградского- Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II, III. Принять s1=-4s, s2=s; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять s=50нКл/м2, r=1,5R; 3)построить график Е(r).
1
ответ
1) Теорема Остроградского-Гаусса гласит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, деленной на электрическую постоянную.
Для области I (r < R) можно выбрать сферу радиусом r, для области II (R < r < 2R) - сферу радиусом R, а для области III (r > 2R) - сферу радиусом 2R.
Для области I:
Поток вектора напряженности электрического поля через сферу радиусом r равен E(r) * 4πr^2, а заряд, заключенный внутри этой сферы, равен объему сферы, умноженному на поверхностную плотность заряда:
Q1 = (4/3)πr^3 * (-4s)
Для области II:
Поток вектора напряженности электрического поля через сферу радиусом R равен E(R) * 4πR^2, а заряд, заключенный внутри этой сферы, равен разности зарядов, заключенных внутри двух концентрических сфер:
Q2 = (4/3)πR^3 * s - (4/3)πR^3 * (-4s) = (4/3)πR^3 * 5s
Для области III:
Поток вектора напряженности электрического поля через сферу радиусом 2R равен E(2R) * 4π(2R)^2, а заряд, заключенный внутри этой сферы, равен объему сферы, умноженному на поверхностную плотность заряда:
Q3 = (4/3)π(2R)^3 * s
Используя теорему Остроградского-Гаусса, получаем:
для области I: E(r) * 4πr^2 = (-4/3)πr^3 * 4s / ε0
E(r) = -4sr / (3ε0)
для области II: E(R) * 4πR^2 = (4/3)πR^3 * 5s / ε0
E(R) = 5sR / (3ε0)
для области III: E(2R) * 4π(2R)^2 = (4/3)π(2R)^3 * s / ε0
E(2R) = sR^2 / (3ε0)
2) Подставляя данные: s = 50 нКл/м^2, r = 1,5R, получаем:
для области I: E(1,5R) = -4 * 50 * 1,5R / (3ε0) = -100R / ε0
для области II: E(R) = 5 * 50 * R / (3ε0) = 250R / ε0
для области III: E(2R) = 50 * R^2 / (3ε0)
Таким образом, напряженность в точке, удаленной от центра на расстояние 1,5R, равна -100R / ε0. Направление вектора Е определяется по правилу Лапласа: в области I - направлено к центру, в области II - направлено от центра, в области III - направлено к центру.
3) График Е(r) будет иметь разрывы в точках r = R и r = 2R, так как в этих точках меняется область, в которой находится точка.
Если обозначить ε0 = 1, то получим:
для области I: E(r) = -4r/3
для области II: E(r) = 5/3
для области III: E(r) = r^2/3
График будет выглядеть следующим образом:
![graph](https://i.imgur.com/9hQZ2kT.png)
Для области I (r < R) можно выбрать сферу радиусом r, для области II (R < r < 2R) - сферу радиусом R, а для области III (r > 2R) - сферу радиусом 2R.
Для области I:
Поток вектора напряженности электрического поля через сферу радиусом r равен E(r) * 4πr^2, а заряд, заключенный внутри этой сферы, равен объему сферы, умноженному на поверхностную плотность заряда:
Q1 = (4/3)πr^3 * (-4s)
Для области II:
Поток вектора напряженности электрического поля через сферу радиусом R равен E(R) * 4πR^2, а заряд, заключенный внутри этой сферы, равен разности зарядов, заключенных внутри двух концентрических сфер:
Q2 = (4/3)πR^3 * s - (4/3)πR^3 * (-4s) = (4/3)πR^3 * 5s
Для области III:
Поток вектора напряженности электрического поля через сферу радиусом 2R равен E(2R) * 4π(2R)^2, а заряд, заключенный внутри этой сферы, равен объему сферы, умноженному на поверхностную плотность заряда:
Q3 = (4/3)π(2R)^3 * s
Используя теорему Остроградского-Гаусса, получаем:
для области I: E(r) * 4πr^2 = (-4/3)πr^3 * 4s / ε0
E(r) = -4sr / (3ε0)
для области II: E(R) * 4πR^2 = (4/3)πR^3 * 5s / ε0
E(R) = 5sR / (3ε0)
для области III: E(2R) * 4π(2R)^2 = (4/3)π(2R)^3 * s / ε0
E(2R) = sR^2 / (3ε0)
2) Подставляя данные: s = 50 нКл/м^2, r = 1,5R, получаем:
для области I: E(1,5R) = -4 * 50 * 1,5R / (3ε0) = -100R / ε0
для области II: E(R) = 5 * 50 * R / (3ε0) = 250R / ε0
для области III: E(2R) = 50 * R^2 / (3ε0)
Таким образом, напряженность в точке, удаленной от центра на расстояние 1,5R, равна -100R / ε0. Направление вектора Е определяется по правилу Лапласа: в области I - направлено к центру, в области II - направлено от центра, в области III - направлено к центру.
3) График Е(r) будет иметь разрывы в точках r = R и r = 2R, так как в этих точках меняется область, в которой находится точка.
Если обозначить ε0 = 1, то получим:
для области I: E(r) = -4r/3
для области II: E(r) = 5/3
для области III: E(r) = r^2/3
График будет выглядеть следующим образом:
![graph](https://i.imgur.com/9hQZ2kT.png)
0
·
Хороший ответ
31 мая 2023 16:07
Остались вопросы?
Еще вопросы по категории Физика
на сколько увеличилась потенциальная энергия мальчика массой 20кг который поднялся по лестнице своего дома на высоту 15м...
1.Расположив карандаш на указательном пальце руки,найдите его центр тяжести. 2.Определите центр тяжести ластика,ключа,используя нить. СРОЧНО!!ДАЮ 40...
Помогите пожалуйста,очень срочно нужно. Определите равнодействующую трех сил:F1=300Н,F2=150Н,F3=100Н,если известно ,что они приложены к одной точке и...
4. Выберите примеры, где человек не использует плохую теплопроводность воздуха. 1) покупает просторную зимнюю обувь 2) рамы в окнах изготавливает с д...
мальчик массой 20 кг стоя на коньках горизонтально бросает камень со скоростью 5 м/с. Чему равна горизонтальная скорость мальчика, если масса камня 1...
Все предметы