Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Using the power rule of integration, we have:
∫ x^-6 dx = x^-5 / (-5) + C
where C is the constant of integration.
Alternatively, we can rewrite x^-6 as (1/x)^6 and use the power rule for negative exponents:
∫ x^-6 dx = ∫ (1/x)^6 dx = (-1/5) * (1/x)^5 + C
Either way, we get:
∫ x^-6 dx = -1/5x^5 + C
∫ x^-6 dx = x^-5 / (-5) + C
where C is the constant of integration.
Alternatively, we can rewrite x^-6 as (1/x)^6 and use the power rule for negative exponents:
∫ x^-6 dx = ∫ (1/x)^6 dx = (-1/5) * (1/x)^5 + C
Either way, we get:
∫ x^-6 dx = -1/5x^5 + C
0
·
Хороший ответ
4 июня 2023 07:54
Остались вопросы?
Все предметы