Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения задачи нам понадобится использовать теорему Пифагора для нахождения радиуса цилиндра и высоты отсеченной плоскостью.
Пусть радиус цилиндра равен r, а расстояние от центра основания цилиндра до плоскости, параллельной оси, равно h.
Тогда по теореме Пифагора получаем:
r^2 = (h/2)^2 + 30^2
h = 2*sqrt(r^2 - 900)
Объем цилиндра можно вычислить по формуле:
V = π*r^2*h
Подставляя выражение для h, получим:
V = π*r^2*2*sqrt(r^2 - 900)
Для решения задачи необходимо знать значение радиуса цилиндра. Оно может быть найдено из условия, что радиусы, проведенные к концам хорды, образуют угол 60 градусов.
Рассмотрим треугольник, образованный радиусом цилиндра и отрезком хорды. Этот треугольник является равносторонним, так как угол между радиусами равен 60 градусов. Поэтому длина хорды равна 2r*sin(60) = r*sqrt(3).
Таким образом, имеем систему уравнений:
r^2 = (h/2)^2 + 30^2
r*sqrt(3) = 2r
Решая ее, получаем:
r = 60*sqrt(3)/3 = 20*sqrt(3)
h = 2*sqrt((20*sqrt(3))^2 - 900) = 40
Подставляя значения r и h в формулу для объема, получим:
V = π*(20*sqrt(3))^2*2*sqrt((20*sqrt(3))^2 - 900) = 6000π см^3
Ответ: объем цилиндра равен 6000π см^3.
Пусть радиус цилиндра равен r, а расстояние от центра основания цилиндра до плоскости, параллельной оси, равно h.
Тогда по теореме Пифагора получаем:
r^2 = (h/2)^2 + 30^2
h = 2*sqrt(r^2 - 900)
Объем цилиндра можно вычислить по формуле:
V = π*r^2*h
Подставляя выражение для h, получим:
V = π*r^2*2*sqrt(r^2 - 900)
Для решения задачи необходимо знать значение радиуса цилиндра. Оно может быть найдено из условия, что радиусы, проведенные к концам хорды, образуют угол 60 градусов.
Рассмотрим треугольник, образованный радиусом цилиндра и отрезком хорды. Этот треугольник является равносторонним, так как угол между радиусами равен 60 градусов. Поэтому длина хорды равна 2r*sin(60) = r*sqrt(3).
Таким образом, имеем систему уравнений:
r^2 = (h/2)^2 + 30^2
r*sqrt(3) = 2r
Решая ее, получаем:
r = 60*sqrt(3)/3 = 20*sqrt(3)
h = 2*sqrt((20*sqrt(3))^2 - 900) = 40
Подставляя значения r и h в формулу для объема, получим:
V = π*(20*sqrt(3))^2*2*sqrt((20*sqrt(3))^2 - 900) = 6000π см^3
Ответ: объем цилиндра равен 6000π см^3.
0
·
Хороший ответ
5 июня 2023 10:09
Остались вопросы?
Еще вопросы по категории Геометрия
Вычислите площадь сечения шара плоскостью, отстоящей от центра шара на расстоянии 4 см, если диаметр шара 10 см...
Равные отрезки KL и NM лежат на параллельных прямых, КМ – секущая. Докажите, что треугольники KLM и MNK равны....
Сторона треугольника равна 6 см, а прилежащие к ней углы равны 54° и 96°. Найдите длины дуг, на которые делят описанную окружность треугольника его ве...
Как называются стороны равнобедренного треугольника...
Чему равен объем правильной треугольной призмы со стороной основания a и расстоянием от вершины одного основания до противолежащей стороны другого осн...
Все предметы