Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для решения задачи нам понадобится теорема косинусов:
a^2 = b^2 + c^2 - 2bc*cos(alpha)
где a, b и c - стороны треугольника, а alpha - угол между сторонами b и c.
Обозначим через h высоту пирамиды, опущенную на основание ABC, а через Sп.п. - ее площадь.
Так как AD = 2AB, то треугольник ABD является равнобедренным. Значит, угол DAB равен 60 градусов, а угол ABD равен (180-60)/2 = 60/2 = 30 градусов.
Теперь можем найти длину стороны BD:
BD^2 = AB^2 + AD^2 - 2AB*AD*cos(60) = (21sqrt(3))^2 + (2*21sqrt(3))^2 - 2*21sqrt(3)*2*21sqrt(3)*0.5 = 882
BD = sqrt(882) = 21sqrt(2)
Треугольник BCD является прямоугольным, так как угол BDC = 90 градусов (угол между высотой и основанием пирамиды). Значит, мы можем найти длину стороны CD:
CD^2 = BC^2 - BD^2 = (2*AB)^2 - (21sqrt(2))^2 = 4*(21sqrt(3))^2 - 882 = 882
CD = sqrt(882) = 21sqrt(2)
Теперь можем найти высоту пирамиды:
h^2 = AB^2 - (BC/2)^2 - (CD/2)^2 = (21sqrt(3))^2 - ((2*21sqrt(3))/2)^2 - ((21sqrt(2))/2)^2 = 567
h = sqrt(567) = 3sqrt(63) = 9sqrt(7)
Наконец, можем найти площадь пирамиды:
Sп.п. = (AB*BC)/2 + (AB*CD)/2 + AB*h = (21sqrt(3)*2*AB)/2 + (21sqrt(3)*2*AB)/2 + AB*9sqrt(7) = 63sqrt(3) + 18ABsqrt(7) = 63sqrt(3) + 756sqrt(3) = 819sqrt(3)
Ответ: Sп.п. = 819sqrt(3).
a^2 = b^2 + c^2 - 2bc*cos(alpha)
где a, b и c - стороны треугольника, а alpha - угол между сторонами b и c.
Обозначим через h высоту пирамиды, опущенную на основание ABC, а через Sп.п. - ее площадь.
Так как AD = 2AB, то треугольник ABD является равнобедренным. Значит, угол DAB равен 60 градусов, а угол ABD равен (180-60)/2 = 60/2 = 30 градусов.
Теперь можем найти длину стороны BD:
BD^2 = AB^2 + AD^2 - 2AB*AD*cos(60) = (21sqrt(3))^2 + (2*21sqrt(3))^2 - 2*21sqrt(3)*2*21sqrt(3)*0.5 = 882
BD = sqrt(882) = 21sqrt(2)
Треугольник BCD является прямоугольным, так как угол BDC = 90 градусов (угол между высотой и основанием пирамиды). Значит, мы можем найти длину стороны CD:
CD^2 = BC^2 - BD^2 = (2*AB)^2 - (21sqrt(2))^2 = 4*(21sqrt(3))^2 - 882 = 882
CD = sqrt(882) = 21sqrt(2)
Теперь можем найти высоту пирамиды:
h^2 = AB^2 - (BC/2)^2 - (CD/2)^2 = (21sqrt(3))^2 - ((2*21sqrt(3))/2)^2 - ((21sqrt(2))/2)^2 = 567
h = sqrt(567) = 3sqrt(63) = 9sqrt(7)
Наконец, можем найти площадь пирамиды:
Sп.п. = (AB*BC)/2 + (AB*CD)/2 + AB*h = (21sqrt(3)*2*AB)/2 + (21sqrt(3)*2*AB)/2 + AB*9sqrt(7) = 63sqrt(3) + 18ABsqrt(7) = 63sqrt(3) + 756sqrt(3) = 819sqrt(3)
Ответ: Sп.п. = 819sqrt(3).
1
·
Хороший ответ
15 июня 2023 11:03
Остались вопросы?
Еще вопросы по категории Геометрия
Все ребра правильной треугольной призмы имеют длину 6 см. найдите объем призмы...
Укажите номера верных утверждений.1) Через любую точку проходит не менее одной прямой.2) Если при пересечении двух прямых третьей пря...
Площадь основания правильной треугольной призмы равна 16 корня из 3 см в кв. Найдите площадь полной поверхности и объем призмы, зная, что высота призм...
Сумма вертикальных углов AND и CNB , образованных при пересечении прямых AB и CD, равна 208º , N-точка пересечения прямых. Найдите угол ANC...
Назовите углы прилежащие к стороне AB в треугольнике ABC (рисунок внутри)...