Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
16 июня 2023 10:30
209
Найдите наименьшее значение функции y=(x-12) √(x+9)+5 на отрезке [-8;7].
помогите пожалуйста!
1
ответ
Для решения этой задачи необходимо найти точки экстремума функции на отрезке [-8;7] и сравнить значения функции в этих точках.
1. Найдем производную функции y=(x-12) √(x+9)+5:
y' = (x-12) * (1/2) * (x+9)^(-1/2) + √(x+9)
2. Найдем точки, в которых производная равна нулю:
(x-12) * (1/2) * (x+9)^(-1/2) + √(x+9) = 0
(x-12) * (x+9)^(1/2) + 2√(x+9) = 0
(x+9)^(1/2) * (x-12+2√(x+9)) = 0
Отсюда получаем две точки экстремума: x1 = -9 и x2 = 4.
3. Найдем значения функции в этих точках:
y1 = (-9-12) √(-9+9)+5 = 5
y2 = (4-12) √(4+9)+5 = -7
Ответ: наименьшее значение функции y=(x-12) √(x+9)+5 на отрезке [-8;7] равно -7 и достигается в точке x=4.
1. Найдем производную функции y=(x-12) √(x+9)+5:
y' = (x-12) * (1/2) * (x+9)^(-1/2) + √(x+9)
2. Найдем точки, в которых производная равна нулю:
(x-12) * (1/2) * (x+9)^(-1/2) + √(x+9) = 0
(x-12) * (x+9)^(1/2) + 2√(x+9) = 0
(x+9)^(1/2) * (x-12+2√(x+9)) = 0
Отсюда получаем две точки экстремума: x1 = -9 и x2 = 4.
3. Найдем значения функции в этих точках:
y1 = (-9-12) √(-9+9)+5 = 5
y2 = (4-12) √(4+9)+5 = -7
Ответ: наименьшее значение функции y=(x-12) √(x+9)+5 на отрезке [-8;7] равно -7 и достигается в точке x=4.
0
·
Хороший ответ
16 июня 2023 10:33
Остались вопросы?
Еще вопросы по категории Математика
25,2 : 3 целых 1/2 + (6-4 целых 1/3)×0,6 Решите пожалуйста с действиями...
Какой масштаб нужен для рисования карты по заданию '1 5000 масштаб'?...
Какое значение будет у выражения 11^2?...
Смартик поделил произведение двух натуральных чисел на их частное. Какое из чисел А-Д он мог получить? (А) 2 (Б) 3 (В) 5 (Г) 6 (Д) 9...
Журналистика в эпоху реформ 1860-х гг. – общий обзор....