Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
25 июня 2023 12:58
368
апофема боковой грани правильной четырехугольной пирамиды образует с высотой пирамиды угол 60 найдите обьем пирамиды если длина стороны основания 6√3
1
ответ
Для решения задачи нам нужно найти высоту и боковую грань пирамиды, а затем вычислить её объём по формуле:
V = (1/3) * S_base * h
где S_base - площадь основания, а h - высота пирамиды.
Начнём с нахождения высоты пирамиды. Рассмотрим прямоугольный треугольник, образованный высотой, боковой гранью и половиной стороны основания:

Угол между высотой и боковой гранью равен 60 градусов, поэтому мы можем применить тригонометрические функции для нахождения высоты:
sin(60) = h / (1/2 * a)
где a = 6√3 - длина стороны основания.
Решая уравнение относительно h, получаем:
h = 3√3
Теперь нам нужно найти площадь боковой грани. Рассмотрим прямоугольный треугольник, образованный боковой гранью, половиной стороны основания и половиной длины ребра пирамиды:

Угол между боковой гранью и основанием равен 45 градусов (так как основание - правильный четырёхугольник), поэтому мы можем применить тригонометрические функции для нахождения длины боковой грани:
sin(45) = b / (1/2 * a)
где b - длина боковой грани.
Решая уравнение относительно b, получаем:
b = 3
Теперь мы можем вычислить объём пирамиды:
V = (1/3) * S_base * h = (1/3) * (6√3)^2 * 3√3 = 54√3
Ответ: объём пирамиды равен 54√3.
V = (1/3) * S_base * h
где S_base - площадь основания, а h - высота пирамиды.
Начнём с нахождения высоты пирамиды. Рассмотрим прямоугольный треугольник, образованный высотой, боковой гранью и половиной стороны основания:

Угол между высотой и боковой гранью равен 60 градусов, поэтому мы можем применить тригонометрические функции для нахождения высоты:
sin(60) = h / (1/2 * a)
где a = 6√3 - длина стороны основания.
Решая уравнение относительно h, получаем:
h = 3√3
Теперь нам нужно найти площадь боковой грани. Рассмотрим прямоугольный треугольник, образованный боковой гранью, половиной стороны основания и половиной длины ребра пирамиды:

Угол между боковой гранью и основанием равен 45 градусов (так как основание - правильный четырёхугольник), поэтому мы можем применить тригонометрические функции для нахождения длины боковой грани:
sin(45) = b / (1/2 * a)
где b - длина боковой грани.
Решая уравнение относительно b, получаем:
b = 3
Теперь мы можем вычислить объём пирамиды:
V = (1/3) * S_base * h = (1/3) * (6√3)^2 * 3√3 = 54√3
Ответ: объём пирамиды равен 54√3.
0
·
Хороший ответ
25 июня 2023 13:00
Остались вопросы?
Еще вопросы по категории Математика
Каковы следующие числа в данной последовательности '1 5х 6х 8', если х равно 2?...
3.1 Написать конспект и принести на консультацию в соответствии с графиком посещений. &nb...
Переведите 0,00000001 м3 в мм3 А)0,000001 Б)0,0001 В)1 Г)10...
Размеры ванной комнаты 14 дм X 18 дм. Можно ли вымостить пол в ванной квадратные плитками площадью 4дм2 не разрезая их?А квадратными плитками площадью...
Помогите плизз! 2 плюс 2 умножить на 2. сколько будет 6 или 8? и почему?...