Лучшие помощники
27 сентября 2023 09:28
132

Решить задачу по геометрии:

а=?см

в=?см,в3/4раза< чем а}30см

Р=?см

S=?см^2

1 ответ
Посмотреть ответы
Для решения данной задачи по геометрии, нам необходимо использовать информацию о соотношении между сторонами треугольника.

По условию задачи, у нас есть следующие данные:
а = ? см (длина стороны а)
в = 3/4 * а (длина стороны в)
в < а (сторона в меньше стороны а)
а = 30 см (длина стороны а)

1. Найдем длину стороны в:
в = 3/4 * 30 см
в = 22.5 см

2. Найдем периметр треугольника (P):
P = а + в + с
P = 30 см + 22.5 см + с

3. Найдем площадь треугольника (S) с помощью формулы Герона:
S = √(P/2 * (P/2 - а) * (P/2 - в) * (P/2 - с))

4. Подставим значения в формулу:
S = √((30 см + 22.5 см + с)/2 * ((30 см + 22.5 см + с)/2 - 30 см) * ((30 см + 22.5 см + с)/2 - 22.5 см) * ((30 см + 22.5 см + с)/2 - с))

5. Упростим формулу:
S = √((52.5 см + с)/2 * (22.5 см + с)/2 * (7.5 см + с)/2 * (7.5 см)/2)

6. Вычислим площадь:
S = √((52.5 см + с) * (22.5 см + с) * (7.5 см + с) * (7.5 см)/4)

7. Раскроем скобки:
S = √((1102.5 см^2 + 82.5смс + c^2) * (56.25 см^2 + 15смс + c^2)/4)

8. Упростим выражение:
S = √((1237.5 см^2 + 97.5смс + 2c^2 + 15смс^2 + c^3)/4)

Таким образом, мы получили формулу для нахождения площади треугольника S в зависимости от неизвестной стороны с. Чтобы решить задачу, необходимо знать значение стороны с.
0
·
Хороший ответ
27 сентября 2023 09:30
Остались вопросы?
Найти нужный