Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
5 ноября 2023 11:22
171
Рассмотрим остатки 0,1,…,99 при делении на 100 . Заменим каждый остаток i на остаток i^2 при делении на 100 . Введите все остатки i , отличные от 5 , которые при возведении в квадрат дают такой же остаток при делении на 100 , что и 5^2 .
1
ответ
Остаток 5^2 при делении на 100 равен 25. Чтобы найти все остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток, мы можем решить уравнение i^2 ≡ 25 (mod 100).
Разложим 25 на простые множители: 25 = 5 * 5. Так как 5 является простым числом, то уравнение можно записать в виде двух уравнений:
i^2 ≡ 5 (mod 100)
i^2 ≡ 5 (mod 100)
Теперь рассмотрим каждое уравнение по отдельности:
1) i^2 ≡ 5 (mod 100)
Решим это уравнение методом перебора. Подставим значения i от 0 до 99 и найдем значения i^2 mod 100:
0^2 ≡ 0 (mod 100)
1^2 ≡ 1 (mod 100)
2^2 ≡ 4 (mod 100)
3^2 ≡ 9 (mod 100)
4^2 ≡ 16 (mod 100)
5^2 ≡ 25 (mod 100)
6^2 ≡ 36 (mod 100)
7^2 ≡ 49 (mod 100)
8^2 ≡ 64 (mod 100)
9^2 ≡ 81 (mod 100)
10^2 ≡ 0 (mod 100)
11^2 ≡ 21 (mod 100)
12^2 ≡ 44 (mod 100)
13^2 ≡ 69 (mod 100)
14^2 ≡ 96 (mod 100)
15^2 ≡ 25 (mod 100)
...
Мы видим, что остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток, как и 5^2, равны 15 и 85.
2) i^2 ≡ 5 (mod 100)
Решим это уравнение таким же способом:
0^2 ≡ 0 (mod 100)
1^2 ≡ 1 (mod 100)
2^2 ≡ 4 (mod 100)
3^2 ≡ 9 (mod 100)
4^2 ≡ 16 (mod 100)
5^2 ≡ 25 (mod 100)
6^2 ≡ 36 (mod 100)
7^2 ≡ 49 (mod 100)
8^2 ≡ 64 (mod 100)
9^2 ≡ 81 (mod 100)
10^2 ≡ 0 (mod 100)
11^2 ≡ 21 (mod 100)
12^2 ≡ 44 (mod 100)
13^2 ≡ 69 (mod 100)
14^2 ≡ 96 (mod 100)
15^2 ≡ 25 (mod 100)
...
Мы видим, что остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток, как и 5^2, равны 35 и 65.
Итак, все остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток при делении на 100, что и 5^2, равны 15, 35, 65 и 85.
Разложим 25 на простые множители: 25 = 5 * 5. Так как 5 является простым числом, то уравнение можно записать в виде двух уравнений:
i^2 ≡ 5 (mod 100)
i^2 ≡ 5 (mod 100)
Теперь рассмотрим каждое уравнение по отдельности:
1) i^2 ≡ 5 (mod 100)
Решим это уравнение методом перебора. Подставим значения i от 0 до 99 и найдем значения i^2 mod 100:
0^2 ≡ 0 (mod 100)
1^2 ≡ 1 (mod 100)
2^2 ≡ 4 (mod 100)
3^2 ≡ 9 (mod 100)
4^2 ≡ 16 (mod 100)
5^2 ≡ 25 (mod 100)
6^2 ≡ 36 (mod 100)
7^2 ≡ 49 (mod 100)
8^2 ≡ 64 (mod 100)
9^2 ≡ 81 (mod 100)
10^2 ≡ 0 (mod 100)
11^2 ≡ 21 (mod 100)
12^2 ≡ 44 (mod 100)
13^2 ≡ 69 (mod 100)
14^2 ≡ 96 (mod 100)
15^2 ≡ 25 (mod 100)
...
Мы видим, что остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток, как и 5^2, равны 15 и 85.
2) i^2 ≡ 5 (mod 100)
Решим это уравнение таким же способом:
0^2 ≡ 0 (mod 100)
1^2 ≡ 1 (mod 100)
2^2 ≡ 4 (mod 100)
3^2 ≡ 9 (mod 100)
4^2 ≡ 16 (mod 100)
5^2 ≡ 25 (mod 100)
6^2 ≡ 36 (mod 100)
7^2 ≡ 49 (mod 100)
8^2 ≡ 64 (mod 100)
9^2 ≡ 81 (mod 100)
10^2 ≡ 0 (mod 100)
11^2 ≡ 21 (mod 100)
12^2 ≡ 44 (mod 100)
13^2 ≡ 69 (mod 100)
14^2 ≡ 96 (mod 100)
15^2 ≡ 25 (mod 100)
...
Мы видим, что остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток, как и 5^2, равны 35 и 65.
Итак, все остатки i, отличные от 5, которые при возведении в квадрат дают такой же остаток при делении на 100, что и 5^2, равны 15, 35, 65 и 85.
0
·
Хороший ответ
5 ноября 2023 11:24
Остались вопросы?
Еще вопросы по категории Математика
через две отмеченные точки проведи прямую линию.сколько прямых можно провести через две точки? через эти же две точки проведи кривую линию,ещё одну кр...
Какое значение имеет 10 в минус 7 в научной нотации?...
Какое число пропущено в задании '1 4 4 x 64'?...
Какие действия выполняются деепричастными оборотами?...
Если взять 100 часов, сколько минут это будет?...