Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
14 ноября 2023 06:21
255
∫arctg^3x/1+x^2 dx
интегрирование заменой переменной
1
ответ
To integrate the given function ∫arctg^3x/1+x^2 dx using variable substitution, we can let u = arctan(x).
Differentiating both sides with respect to x gives du/dx = 1/(1+x^2).
Rearranging the equation, we have dx = du/(1+x^2).
Substituting u and dx into the integral, we get ∫arctg^3x/1+x^2 dx = ∫u^3 * du/(1+x^2).
Now, we can rewrite the denominator as (1+u^2) using the substitution.
Therefore, the integral becomes ∫u^3 * du/(1+u^2).
To solve this integral, we can use the method of partial fractions.
First, we factorize the denominator as (1+u^2) = (u+i)(u-i).
Next, we can write the integrand as A/(u+i) + B/(u-i), where A and B are constants.
Multiplying through by (1+u^2), we get u^3 = A(u-i) + B(u+i).
Expanding and equating the coefficients of u^3, we have:
u^3 = (A+B)u - (Ai-Bi).
Comparing the coefficients, we get A + B = 0 and Ai - Bi = 0.
From the first equation, we have A = -B.
Substituting this into the second equation, we get Ai - Bi = 0, which implies A = B.
Therefore, A = -B.
Now, substituting these values back into the partial fraction decomposition, we have:
∫u^3 * du/(1+u^2) = ∫(-B/(u+i) + B/(u-i)) du.
Integrating each term separately, we get:
= -B*ln|u+i| + B*ln|u-i| + C,
where C is the constant of integration.
Finally, substituting back u = arctan(x), we get:
= -B*ln|arctan(x)+i| + B*ln|arctan(x)-i| + C.
Hence, the integral of arctan^3x/(1+x^2) dx using variable substitution is given by:
∫arctan^3x/(1+x^2) dx = -B*ln|arctan(x)+i| + B*ln|arctan(x)-i| + C.
Differentiating both sides with respect to x gives du/dx = 1/(1+x^2).
Rearranging the equation, we have dx = du/(1+x^2).
Substituting u and dx into the integral, we get ∫arctg^3x/1+x^2 dx = ∫u^3 * du/(1+x^2).
Now, we can rewrite the denominator as (1+u^2) using the substitution.
Therefore, the integral becomes ∫u^3 * du/(1+u^2).
To solve this integral, we can use the method of partial fractions.
First, we factorize the denominator as (1+u^2) = (u+i)(u-i).
Next, we can write the integrand as A/(u+i) + B/(u-i), where A and B are constants.
Multiplying through by (1+u^2), we get u^3 = A(u-i) + B(u+i).
Expanding and equating the coefficients of u^3, we have:
u^3 = (A+B)u - (Ai-Bi).
Comparing the coefficients, we get A + B = 0 and Ai - Bi = 0.
From the first equation, we have A = -B.
Substituting this into the second equation, we get Ai - Bi = 0, which implies A = B.
Therefore, A = -B.
Now, substituting these values back into the partial fraction decomposition, we have:
∫u^3 * du/(1+u^2) = ∫(-B/(u+i) + B/(u-i)) du.
Integrating each term separately, we get:
= -B*ln|u+i| + B*ln|u-i| + C,
where C is the constant of integration.
Finally, substituting back u = arctan(x), we get:
= -B*ln|arctan(x)+i| + B*ln|arctan(x)-i| + C.
Hence, the integral of arctan^3x/(1+x^2) dx using variable substitution is given by:
∫arctan^3x/(1+x^2) dx = -B*ln|arctan(x)+i| + B*ln|arctan(x)-i| + C.
0
·
Хороший ответ
14 ноября 2023 06:24
Остались вопросы?
Еще вопросы по категории Математика
Самолёт летел до посадки 4 часа и пролетел 2520км. После этого он пролетел к месту назначения ещё 2700км за 5 часов. Узнай среднюю скорость самолёта з...
Каковы последствия попадания 1 хлорпропан гексана в организм человека?...
Какое число получится, если возвести 1 6 в четвертую степень?...
постройте угол 120 градусов из вершины угла проведите луч так чтобы один из образовавшихся углов был 30 больше другого определите величины получивших...
Папа сказал, что он идёт со скоростью 6 км/ч, на машине едет в 10 раз быстрее, а на велосипеде - в 4 раза медленнее, чем на машине. С какой скоростью...