Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Волновая функция одномерного гармонического осциллятора, находящегося в основном состоянии, имеет вид Ψ0(x) = ((mω)/(πh))^(1/4) exp((mωx^2)/(2h))
Определить среднее значение величины возвращающей силы, выразив его через массу частицы и частоту колебаний ω.
1
ответ
Среднее значение величины возвращающей силы можно определить, используя оператор возвращающей силы F = -mω^2x. Для этого нужно найти математическое ожидание этого оператора с использованием волновой функции основного состояния.
Среднее значение величины возвращающей силы (F) определяется как:
< F > = ∫ Ψ0(x) * F * Ψ0(x) dx
Подставляя волновую функцию Ψ0(x) и оператор F, получим:
< F > = ∫ ((mω)/(πh))^(1/2) exp((mωx^2)/(2h)) * (-mω^2x) * ((mω)/(πh))^(1/2) exp((mωx^2)/(2h)) dx
< F > = -mω^2 * ∫ (mω/(πh)) exp(mωx^2/h) * x * exp(mωx^2/h) dx
< F > = -mω^2 * (mω/(πh)) ∫ x * exp(2mωx^2/h) dx
Для решения этого интеграла можно воспользоваться заменой переменной u = 2mωx^2/h. Тогда dx = (h/(4mω))^(1/2) du.
< F > = -mω^2 * (mω/(πh)) ∫ (h/(4mω))^(1/2) * (u/h) * exp(u) du
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * ∫ u * exp(u) du
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * (u * exp(u) - ∫ exp(u) du)
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * (u * exp(u) - exp(u))
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * (2mωx^2/h * exp(2mωx^2/h) - exp(2mωx^2/h))
< F > = -2mω^3 * (x^2 * exp(2mωx^2/h) - exp(2mωx^2/h)) / (4mω)^(1/2)
< F > = -2mω^3 * (x^2 - 1) / (4mω)^(1/2)
Таким образом, среднее значение величины возвращающей силы равно -2mω^3 * (x^2 - 1) / (4mω)^(1/2).
Среднее значение величины возвращающей силы (F) определяется как:
< F > = ∫ Ψ0(x) * F * Ψ0(x) dx
Подставляя волновую функцию Ψ0(x) и оператор F, получим:
< F > = ∫ ((mω)/(πh))^(1/2) exp((mωx^2)/(2h)) * (-mω^2x) * ((mω)/(πh))^(1/2) exp((mωx^2)/(2h)) dx
< F > = -mω^2 * ∫ (mω/(πh)) exp(mωx^2/h) * x * exp(mωx^2/h) dx
< F > = -mω^2 * (mω/(πh)) ∫ x * exp(2mωx^2/h) dx
Для решения этого интеграла можно воспользоваться заменой переменной u = 2mωx^2/h. Тогда dx = (h/(4mω))^(1/2) du.
< F > = -mω^2 * (mω/(πh)) ∫ (h/(4mω))^(1/2) * (u/h) * exp(u) du
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * ∫ u * exp(u) du
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * (u * exp(u) - ∫ exp(u) du)
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * (u * exp(u) - exp(u))
< F > = -mω^2 * (mω/(πh)) * (h/(4mω))^(1/2) * (2mωx^2/h * exp(2mωx^2/h) - exp(2mωx^2/h))
< F > = -2mω^3 * (x^2 * exp(2mωx^2/h) - exp(2mωx^2/h)) / (4mω)^(1/2)
< F > = -2mω^3 * (x^2 - 1) / (4mω)^(1/2)
Таким образом, среднее значение величины возвращающей силы равно -2mω^3 * (x^2 - 1) / (4mω)^(1/2).
0
·
Хороший ответ
17 ноября 2023 22:18
Остались вопросы?
Еще вопросы по категории Физика
Между молекулами вещества 1) не действует никакие силы 2) не действуют силы притяжения 3) действуют силы притяжения на расстояниях, сравнимых с...
Тело свободно падает с высоты 20 м над землей, какова скорость тела в момент удара о землю? На какой высоте скорость тела двое меньше? ---------------...
Поезд подходит к станции со скоростью 21.6 км/ч и останавливается через 1 минуту после начала торможения. С каким ускорением двигался поезд?...
Мальчик поднимает груз на высоту 50 сантиметров ,действуя силой 40ньютонов чему равна произведенная работа?...
У зажимов аккумулятора не оказалось пометок о том, какой из них "плюсовой" и какой "минусовой". Можно ли узнать это, имея компас? Если да, то почему?...