Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения данной задачи мы можем использовать формулу для площади сектора:
S = (θ/360) * π * r^2,
где S - площадь сектора, θ - центральный угол в градусах, π - число пи (приближенно равно 3.14), r - радиус круга.
Дано, что площадь сектора составляет 3/8 площади круга. Поэтому:
(3/8) * π * r^2 = S.
Так как площадь сектора равна (3/8) площади круга, то площадь оставшейся части круга составляет (1 - 3/8) = 5/8 площади круга.
Теперь мы можем записать уравнение для площади оставшейся части круга:
(5/8) * π * r^2 = S_ост,
где S_ост - площадь оставшейся части круга.
Так как площади сектора и оставшейся части круга в сумме равны площади всего круга, то:
(3/8) * π * r^2 + (5/8) * π * r^2 = π * r^2.
Упрощая это уравнение, получаем:
(8/8) * π * r^2 = π * r^2.
Таким образом, радиус r не влияет на решение данной задачи.
Теперь мы можем решить уравнение для нахождения центрального угла θ:
(3/8) * 360 = θ.
Упрощая это уравнение, получаем:
(3/8) * 360 = θ.
Рассчитывая это выражение, мы получаем:
θ = 135.
Таким образом, центральный угол, соответствующий данному сектору, равен 135 градусам.
S = (θ/360) * π * r^2,
где S - площадь сектора, θ - центральный угол в градусах, π - число пи (приближенно равно 3.14), r - радиус круга.
Дано, что площадь сектора составляет 3/8 площади круга. Поэтому:
(3/8) * π * r^2 = S.
Так как площадь сектора равна (3/8) площади круга, то площадь оставшейся части круга составляет (1 - 3/8) = 5/8 площади круга.
Теперь мы можем записать уравнение для площади оставшейся части круга:
(5/8) * π * r^2 = S_ост,
где S_ост - площадь оставшейся части круга.
Так как площади сектора и оставшейся части круга в сумме равны площади всего круга, то:
(3/8) * π * r^2 + (5/8) * π * r^2 = π * r^2.
Упрощая это уравнение, получаем:
(8/8) * π * r^2 = π * r^2.
Таким образом, радиус r не влияет на решение данной задачи.
Теперь мы можем решить уравнение для нахождения центрального угла θ:
(3/8) * 360 = θ.
Упрощая это уравнение, получаем:
(3/8) * 360 = θ.
Рассчитывая это выражение, мы получаем:
θ = 135.
Таким образом, центральный угол, соответствующий данному сектору, равен 135 градусам.
0
·
Хороший ответ
3 декабря 2023 10:48
Остались вопросы?
Еще вопросы по категории Геометрия
В четырехугольник ABCD вписана окружность,АВ=8, ВС=7, СD=31.Найдите четвертую сторону четырехугольника....
Аксиома параллельных прямых и следствия из нее...
СРОЧНО ПОЖАЛУЙСТА ПОМОГИТЕ! Стороны параллелограмма равны 6 см и 24 см, а высота, проведённая к большей стороне, равна 3,6 см. Вычисли высоту, провед...
найдите градусную меру углов,которые получаются при пересечении двух прямых,если сумма трёх из этих углов равна 270 градусов...
Угол 1 - угол 2 = 75° Найти угол 1, угол 2, угол 3....
Все предметы