Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Для того чтобы найти область определения функции, нужно определить значения x, при которых функция определена и не равна бесконечности.
Выражение в знаменателе функции равно x^2-36. Чтобы избежать деления на ноль, это выражение должно быть отлично от нуля.
x^2-36 ≠ 0
(x-6)(x+6) ≠ 0
Из этого следует, что x ≠ 6 и x ≠ -6.
Таким образом, область определения функции y=корень из 2x−12 +x+15/x^2-36 состоит из всех значений x, кроме x=6 и x=-6.
Выражение в знаменателе функции равно x^2-36. Чтобы избежать деления на ноль, это выражение должно быть отлично от нуля.
x^2-36 ≠ 0
(x-6)(x+6) ≠ 0
Из этого следует, что x ≠ 6 и x ≠ -6.
Таким образом, область определения функции y=корень из 2x−12 +x+15/x^2-36 состоит из всех значений x, кроме x=6 и x=-6.
0
·
Хороший ответ
13 декабря 2023 09:27
Остались вопросы?
Еще вопросы по категории Алгебра
Объём цилиндра вычисляется по формуле V=π⋅R2⋅h, где V — объём, h — высота цилиндра. Пользуясь этой формулой, определи значение h, если V=15⋅π, R=11. (...
Что даёт - на + а что даёт +на -...
2*16^(cosx) -9*4^(cosx) +4=0 Найти корни в промежутке [-3П;-3П/2]...
Построить график функции y=|x-4|+2...
Найти наименьший положительный корень tg pi( x-6)/6=1/корень из 3...
Все предметы