Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для того чтобы найти область определения функции, нужно определить значения x, при которых функция определена и не равна бесконечности.
Выражение в знаменателе функции равно x^2-36. Чтобы избежать деления на ноль, это выражение должно быть отлично от нуля.
x^2-36 ≠ 0
(x-6)(x+6) ≠ 0
Из этого следует, что x ≠ 6 и x ≠ -6.
Таким образом, область определения функции y=корень из 2x−12 +x+15/x^2-36 состоит из всех значений x, кроме x=6 и x=-6.
Выражение в знаменателе функции равно x^2-36. Чтобы избежать деления на ноль, это выражение должно быть отлично от нуля.
x^2-36 ≠ 0
(x-6)(x+6) ≠ 0
Из этого следует, что x ≠ 6 и x ≠ -6.
Таким образом, область определения функции y=корень из 2x−12 +x+15/x^2-36 состоит из всех значений x, кроме x=6 и x=-6.
0
·
Хороший ответ
13 декабря 2023 09:27
Остались вопросы?
Еще вопросы по категории Алгебра
На графике изображена зависимость атмосферного давления от высоты над уровнем моря. На горизонтальной оси отмечена высота над уровнем моря в километра...
Решите квадратное уравнение. x^2-5x-14=0...
Если 2 + 3 = 10 7 + 2 = 63 6 + 5 = 66 Каков будет результат в следующем примере? 8 + 6 = ????...
Сравните числа √52+√46 и 14...
(корень третьей степени) 3^√54*4...