Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 декабря 2023 11:34
416
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15.
1
ответ
Для решения задачи воспользуемся свойством касательной, проведенной к окружности. Оно гласит, что касательная, проведенная к окружности, перпендикулярна радиусу, проведенному из точки касания.
Таким образом, треугольник АОВ является прямоугольным, где ОВ - гипотенуза, АО - катет, АВ - другой катет.
Используя теорему Пифагора, получаем:
ОВ² = АО² + АВ²
ОВ² = 17² + 15²
ОВ² = 289 + 225
ОВ² = 514
ОВ = √514
Таким образом, радиус окружности равен √514.
Таким образом, треугольник АОВ является прямоугольным, где ОВ - гипотенуза, АО - катет, АВ - другой катет.
Используя теорему Пифагора, получаем:
ОВ² = АО² + АВ²
ОВ² = 17² + 15²
ОВ² = 289 + 225
ОВ² = 514
ОВ = √514
Таким образом, радиус окружности равен √514.
0
·
Хороший ответ
14 декабря 2023 11:39
Остались вопросы?
Еще вопросы по категории Математика
Какое время отведено на выполнение задания '10 в 2'?...
на дорогу от посёлка до города на грузовой машине требуются 48 литров бензина хватит ли для поездки в город и обратно 100 литров бензина 90 литров бен...
Какое количество секунд соответствует одному часу?...
Каков результат умножения 100 на 300?...
Каковы значения функций cos(2a) и ctg(2a) при a = π/4?...