Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
14 декабря 2023 11:34
265
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15.
1
ответ
Для решения задачи воспользуемся свойством касательной, проведенной к окружности. Оно гласит, что касательная, проведенная к окружности, перпендикулярна радиусу, проведенному из точки касания.
Таким образом, треугольник АОВ является прямоугольным, где ОВ - гипотенуза, АО - катет, АВ - другой катет.
Используя теорему Пифагора, получаем:
ОВ² = АО² + АВ²
ОВ² = 17² + 15²
ОВ² = 289 + 225
ОВ² = 514
ОВ = √514
Таким образом, радиус окружности равен √514.
Таким образом, треугольник АОВ является прямоугольным, где ОВ - гипотенуза, АО - катет, АВ - другой катет.
Используя теорему Пифагора, получаем:
ОВ² = АО² + АВ²
ОВ² = 17² + 15²
ОВ² = 289 + 225
ОВ² = 514
ОВ = √514
Таким образом, радиус окружности равен √514.
0
·
Хороший ответ
14 декабря 2023 11:39
Остались вопросы?
Еще вопросы по категории Математика
из своих жилищ навстречу друг другу одновременно вышли Братец Еж и Братец Кролик и встретились через 12 минут после начала движения. С какой скоростью...
Какое слово с корнем кас обозначает линию, которая касается кривой в одной точке?...
Помогите пожалуйста! В 100 одинаковых вагонах можно перевезти 6000 Т угля. В трёх таких вагонах помещается столько угля, сколько в двух большегрузных...
Чему равно результат деления 10 на 3?...
Какое время будет через 10 минут после восьми?...