Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения этой задачи, мы можем использовать формулу площади треугольника, которая выглядит следующим образом:
Площадь треугольника ABC = (1/2) * AB * AC * sin(A)
Так как треугольник ABC равнобедренный, то AB = BC. По условию задачи, AB = BC = AC/2.
Подставим эти значения в формулу:
Площадь треугольника ABC = (1/2) * (AC/2) * AC * sin(60°)
Упрощаем выражение:
Площадь треугольника ABC = (1/4) * AC^2 * sin(60°)
Так как sin(60°) = √3/2, подставляем это значение:
Площадь треугольника ABC = (1/4) * AC^2 * (√3/2)
Теперь осталось найти значение AC. По условию задачи, AC = 8.
Подставляем это значение:
Площадь треугольника ABC = (1/4) * 8^2 * (√3/2)
Вычисляем:
Площадь треугольника ABC = (1/4) * 64 * (√3/2)
= 16 * (√3/2)
= 8√3
Таким образом, площадь треугольника АВС равна 8√3.
Площадь треугольника ABC = (1/2) * AB * AC * sin(A)
Так как треугольник ABC равнобедренный, то AB = BC. По условию задачи, AB = BC = AC/2.
Подставим эти значения в формулу:
Площадь треугольника ABC = (1/2) * (AC/2) * AC * sin(60°)
Упрощаем выражение:
Площадь треугольника ABC = (1/4) * AC^2 * sin(60°)
Так как sin(60°) = √3/2, подставляем это значение:
Площадь треугольника ABC = (1/4) * AC^2 * (√3/2)
Теперь осталось найти значение AC. По условию задачи, AC = 8.
Подставляем это значение:
Площадь треугольника ABC = (1/4) * 8^2 * (√3/2)
Вычисляем:
Площадь треугольника ABC = (1/4) * 64 * (√3/2)
= 16 * (√3/2)
= 8√3
Таким образом, площадь треугольника АВС равна 8√3.
1
·
Хороший ответ
20 декабря 2023 18:39
Остались вопросы?
Еще вопросы по категории Геометрия
Периметр равностороннего треугольника равен 6 см. найдите высоту...
Боковые стороны прямоугольной трапеции равны 15 см и 17 см, средняя линия равна 6 см. Найти основание трапеции....
в параллелограмме ABCD диагонали пересекаются в точке О. Смежные стороны параллелограмма равны 10 см и 15 см. Найдите разность периметров треугольнико...
Срочно пж Найдите полную поверхность цилиндра, если его боковая поверхность равна 90 см² а образующая 5 см ...
На рисунке изображен куб abcda1b1c1d1. Укажите прямую пересечения плоскости abc1 и плоскости грани aa1d1d....