Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Найдите меньшую диагональ ромба ABCD со стороной 5, если его меньший угол в 4 раза меньше большего. Значения синусов, косинусов углов, взятых из таблицы Брадиса, округлите до десятых. Ответ оставьте иррациональным числом или округлите до целых.
При выполнении задания необходимо сделать рисунок.
1
ответ
Для начала нарисуем ромб ABCD:

Пусть меньший угол ромба равен $\alpha$, тогда больший угол будет равен $4\alpha$. Так как сумма углов ромба равна $360^\circ$, то:
$$4\alpha + 2\alpha + 2\alpha + 2\alpha = 360^\circ$$
$$10\alpha = 360^\circ$$
$$\alpha = 36^\circ$$
Теперь найдем длину большей диагонали ромба. Для этого воспользуемся формулой для синуса угла, который равен половине большей диагонали:
$$\sin(2\alpha) = \frac{2S}{AC}$$
где $S$ - площадь ромба, $AC$ - сторона ромба.
Площадь ромба можно найти, разделив его на два равнобедренных треугольника:
$$S = 2 \cdot \frac{1}{2} \cdot AC \cdot \frac{1}{2} \cdot BD \cdot \sin(\alpha)$$
$$S = \frac{1}{2} \cdot AC \cdot BD \cdot \sin(\alpha)$$
Так как сторона ромба равна 5, то:
$$S = \frac{1}{2} \cdot 5 \cdot BD \cdot \sin(36^\circ)$$
$$BD = \frac{2S}{5\sin(36^\circ)}$$
Теперь найдем синус угла $4\alpha$:
$$\sin(4\alpha) = \sin(144^\circ) = \sin(180^\circ - 36^\circ) = \sin(36^\circ)$$
Таким образом, мы можем записать:
$$BD = \frac{2S}{5\sin(4\alpha)}$$
$$BD = \frac{2 \cdot \frac{1}{2} \cdot 5 \cdot 5 \cdot \sin(36^\circ)}{5\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(144^\circ)}$$
$$BD = \frac{5\sin(36^\circ)}{\frac{\sqrt{5}-1}{4}}$$
$$BD = \frac{20\sin(36^\circ)}{\sqrt{5}-1}$$
Поскольку $\sin(36^\circ) \approx 0.5878$, то:
$$BD \approx \frac{20 \cdot 0.5878}{\sqrt{5}-1} \approx 7.6$$
Таким образом, меньшая диагональ ромба равна:
$$AC = \frac{BD}{\sqrt{2}} \approx \frac{7.6}{\sqrt{2}} \approx 5.4$$
Ответ: 5.

Пусть меньший угол ромба равен $\alpha$, тогда больший угол будет равен $4\alpha$. Так как сумма углов ромба равна $360^\circ$, то:
$$4\alpha + 2\alpha + 2\alpha + 2\alpha = 360^\circ$$
$$10\alpha = 360^\circ$$
$$\alpha = 36^\circ$$
Теперь найдем длину большей диагонали ромба. Для этого воспользуемся формулой для синуса угла, который равен половине большей диагонали:
$$\sin(2\alpha) = \frac{2S}{AC}$$
где $S$ - площадь ромба, $AC$ - сторона ромба.
Площадь ромба можно найти, разделив его на два равнобедренных треугольника:
$$S = 2 \cdot \frac{1}{2} \cdot AC \cdot \frac{1}{2} \cdot BD \cdot \sin(\alpha)$$
$$S = \frac{1}{2} \cdot AC \cdot BD \cdot \sin(\alpha)$$
Так как сторона ромба равна 5, то:
$$S = \frac{1}{2} \cdot 5 \cdot BD \cdot \sin(36^\circ)$$
$$BD = \frac{2S}{5\sin(36^\circ)}$$
Теперь найдем синус угла $4\alpha$:
$$\sin(4\alpha) = \sin(144^\circ) = \sin(180^\circ - 36^\circ) = \sin(36^\circ)$$
Таким образом, мы можем записать:
$$BD = \frac{2S}{5\sin(4\alpha)}$$
$$BD = \frac{2 \cdot \frac{1}{2} \cdot 5 \cdot 5 \cdot \sin(36^\circ)}{5\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(144^\circ)}$$
$$BD = \frac{5\sin(36^\circ)}{\frac{\sqrt{5}-1}{4}}$$
$$BD = \frac{20\sin(36^\circ)}{\sqrt{5}-1}$$
Поскольку $\sin(36^\circ) \approx 0.5878$, то:
$$BD \approx \frac{20 \cdot 0.5878}{\sqrt{5}-1} \approx 7.6$$
Таким образом, меньшая диагональ ромба равна:
$$AC = \frac{BD}{\sqrt{2}} \approx \frac{7.6}{\sqrt{2}} \approx 5.4$$
Ответ: 5.
0
·
Хороший ответ
17 апреля 2023 08:31
Остались вопросы?
Еще вопросы по категории Геометрия
Помогите плиз с геометрией!!! Выпуклый шестиугольник таков, что его противоположные углы попарно равны. Докажите, что противоположные стороны такого ш...
основание пирамиды ромб с диагоналями 10 и 18. Высота пирамиды проходит через точку пересечения диагоналей ромба. Меньшее боковое ребро пирамиды равно...
Высота цилиндра равна 10 см. Площадь сечения цилиндра плоскостью, параллельной оси цилиндра и находящейся на расстоянии 6 см от нее, равна 160 см2. Вы...
Площадь большого круга шара равна 3.найдите площадь поверхности шара...
Помогите,пожалуйста. С объяснением :) Основания равнобокой трапеции равны 9 см и 21 см, а высота - 8 см. Найдите радиус окружности, описанной около да...