Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Найдите меньшую диагональ ромба ABCD со стороной 5, если его меньший угол в 4 раза меньше большего. Значения синусов, косинусов углов, взятых из таблицы Брадиса, округлите до десятых. Ответ оставьте иррациональным числом или округлите до целых.
При выполнении задания необходимо сделать рисунок.
1
ответ
Для начала нарисуем ромб ABCD:

Пусть меньший угол ромба равен $\alpha$, тогда больший угол будет равен $4\alpha$. Так как сумма углов ромба равна $360^\circ$, то:
$$4\alpha + 2\alpha + 2\alpha + 2\alpha = 360^\circ$$
$$10\alpha = 360^\circ$$
$$\alpha = 36^\circ$$
Теперь найдем длину большей диагонали ромба. Для этого воспользуемся формулой для синуса угла, который равен половине большей диагонали:
$$\sin(2\alpha) = \frac{2S}{AC}$$
где $S$ - площадь ромба, $AC$ - сторона ромба.
Площадь ромба можно найти, разделив его на два равнобедренных треугольника:
$$S = 2 \cdot \frac{1}{2} \cdot AC \cdot \frac{1}{2} \cdot BD \cdot \sin(\alpha)$$
$$S = \frac{1}{2} \cdot AC \cdot BD \cdot \sin(\alpha)$$
Так как сторона ромба равна 5, то:
$$S = \frac{1}{2} \cdot 5 \cdot BD \cdot \sin(36^\circ)$$
$$BD = \frac{2S}{5\sin(36^\circ)}$$
Теперь найдем синус угла $4\alpha$:
$$\sin(4\alpha) = \sin(144^\circ) = \sin(180^\circ - 36^\circ) = \sin(36^\circ)$$
Таким образом, мы можем записать:
$$BD = \frac{2S}{5\sin(4\alpha)}$$
$$BD = \frac{2 \cdot \frac{1}{2} \cdot 5 \cdot 5 \cdot \sin(36^\circ)}{5\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(144^\circ)}$$
$$BD = \frac{5\sin(36^\circ)}{\frac{\sqrt{5}-1}{4}}$$
$$BD = \frac{20\sin(36^\circ)}{\sqrt{5}-1}$$
Поскольку $\sin(36^\circ) \approx 0.5878$, то:
$$BD \approx \frac{20 \cdot 0.5878}{\sqrt{5}-1} \approx 7.6$$
Таким образом, меньшая диагональ ромба равна:
$$AC = \frac{BD}{\sqrt{2}} \approx \frac{7.6}{\sqrt{2}} \approx 5.4$$
Ответ: 5.

Пусть меньший угол ромба равен $\alpha$, тогда больший угол будет равен $4\alpha$. Так как сумма углов ромба равна $360^\circ$, то:
$$4\alpha + 2\alpha + 2\alpha + 2\alpha = 360^\circ$$
$$10\alpha = 360^\circ$$
$$\alpha = 36^\circ$$
Теперь найдем длину большей диагонали ромба. Для этого воспользуемся формулой для синуса угла, который равен половине большей диагонали:
$$\sin(2\alpha) = \frac{2S}{AC}$$
где $S$ - площадь ромба, $AC$ - сторона ромба.
Площадь ромба можно найти, разделив его на два равнобедренных треугольника:
$$S = 2 \cdot \frac{1}{2} \cdot AC \cdot \frac{1}{2} \cdot BD \cdot \sin(\alpha)$$
$$S = \frac{1}{2} \cdot AC \cdot BD \cdot \sin(\alpha)$$
Так как сторона ромба равна 5, то:
$$S = \frac{1}{2} \cdot 5 \cdot BD \cdot \sin(36^\circ)$$
$$BD = \frac{2S}{5\sin(36^\circ)}$$
Теперь найдем синус угла $4\alpha$:
$$\sin(4\alpha) = \sin(144^\circ) = \sin(180^\circ - 36^\circ) = \sin(36^\circ)$$
Таким образом, мы можем записать:
$$BD = \frac{2S}{5\sin(4\alpha)}$$
$$BD = \frac{2 \cdot \frac{1}{2} \cdot 5 \cdot 5 \cdot \sin(36^\circ)}{5\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(4\alpha)}$$
$$BD = \frac{5\sin(36^\circ)}{\sin(144^\circ)}$$
$$BD = \frac{5\sin(36^\circ)}{\frac{\sqrt{5}-1}{4}}$$
$$BD = \frac{20\sin(36^\circ)}{\sqrt{5}-1}$$
Поскольку $\sin(36^\circ) \approx 0.5878$, то:
$$BD \approx \frac{20 \cdot 0.5878}{\sqrt{5}-1} \approx 7.6$$
Таким образом, меньшая диагональ ромба равна:
$$AC = \frac{BD}{\sqrt{2}} \approx \frac{7.6}{\sqrt{2}} \approx 5.4$$
Ответ: 5.
0
·
Хороший ответ
17 апреля 2023 08:31
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите площадь полной поверхности правильной треугольной пирамиды, если ее апофема 4 см, а угол между апофемой и высотой пирамиды равен 30(градусов)....
Одна из сторон параллелограмма в 4 раза больше другой.Найдите длину меньшей стороны,если периметр параллелограмма равен 30 см....
Какова градусная мера угла F, Изображенного на рисунке 278? Решите подробно, расписав порядок действий! Заранее спасибо!...
Основанием прямой призмы является равнобедренная трапеция с основаниями 25см и 9см и высотой 8см .Найдите двугранные углы при боковых гранях призмы...
Из середины D стороны BC равностороннего треугольника ABC проведён перпендикуляр DM к прямой AC Найдите am если AB равен 12 см...