Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 апреля 2024 03:53
215
1)В ДАВС <C=90°, <A: <B=4:5.
Найдите а) <А,<B
б) внешний угол при вершине А.
2) Докажите, что в равнобедренном треугольнике, высоты проведённые к боковым сторонам равны.
3) Построить треугольник по стороне и двум прилежащим углам.
Дополнительно: Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и
меньшего катета равна 42 см. найдите гипотенузу.
1
ответ
1)
а) Из условия известно, что <A = 4x, <B = 5x, и <C = 90°. Так как сумма углов треугольника равна 180°, то 4x + 5x + 90 = 180. Отсюда находим x: 9x + 90 = 180, 9x = 90, x = 10. Теперь находим <A и <B: <A = 4 * 10 = 40°, <B = 5 * 10 = 50°.
б) Внешний угол при вершине A равен сумме двух внутренних углов, не смежных с данным углом. Таким образом, внешний угол при вершине A = <B + <C = 50° + 90° = 140°.
2) Рассмотрим равнобедренный треугольник ABC, где AB = AC. Проведем высоты AD и BE к сторонам BC и AC соответственно. Так как треугольник ABC равнобедренный, то он также равносторонний, и у него все углы при основании равны. Значит, треугольники ABD и ACD подобны, и соответственно, AD/AC = BD/AB и AD/AC = CD/AC. Так как AB = AC, то BD = CD, что означает, что высоты, проведенные к боковым сторонам, равны.
3) Для построения треугольника по стороне и двум прилежащим углам нужно выполнить следующие шаги:
- Нарисовать отрезок, который будет являться одной из сторон треугольника.
- Из одного конца этого отрезка провести луч, образующий с этим отрезком один из заданных углов.
- Из другого конца отрезка провести луч, образующий с этим отрезком другой заданный угол.
- Точка пересечения этих двух лучей будет вершиной треугольника.
- Провести третью сторону треугольника, соединяющую вершину с точками пересечения лучей.
Дополнительно:
Для нахождения гипотенузы прямоугольного треугольника, где один из углов равен 60°, а сумма гипотенузы и меньшего катета равна 42 см, можно воспользоваться формулой косинуса для прямоугольного треугольника:
cos(60°) = adjacent / hypotenuse
cos(60°) = 1/2
Так как adjacent = 42 - smaller leg (меньший катет), то:
1/2 = (42 - smaller leg) / hypotenuse
hypotenuse = (42 - smaller leg) / (1/2)
hypotenuse = 2 * (42 - smaller leg)
hypotenuse = 84 - 2 * smaller leg
Так как у нас есть прямоугольный треугольник с углом 60°, то меньший катет равен hypotenuse * sin(60°):
smaller leg = hypotenuse * sin(60°)
smaller leg = (84 - 2 * smaller leg) * sin(60°)
smaller leg = 84 * sin(60°) - 2 * smaller leg * sin(60°)
smaller leg + 2 * smaller leg * sin(60°) = 84 * sin(60°)
smaller leg(1 + 2 * sin(60°)) = 84 * sin(60°)
smaller leg = (84 * sin(60°)) / (1 + 2 * sin(60°))
Теперь подставляем найденное значение меньшего катета в формулу для нахождения гипотенузы:
hypotenuse = 84 - 2 * smaller leg
Таким образом, мы можем найти гипотенузу прямоугольного треугольника.
а) Из условия известно, что <A = 4x, <B = 5x, и <C = 90°. Так как сумма углов треугольника равна 180°, то 4x + 5x + 90 = 180. Отсюда находим x: 9x + 90 = 180, 9x = 90, x = 10. Теперь находим <A и <B: <A = 4 * 10 = 40°, <B = 5 * 10 = 50°.
б) Внешний угол при вершине A равен сумме двух внутренних углов, не смежных с данным углом. Таким образом, внешний угол при вершине A = <B + <C = 50° + 90° = 140°.
2) Рассмотрим равнобедренный треугольник ABC, где AB = AC. Проведем высоты AD и BE к сторонам BC и AC соответственно. Так как треугольник ABC равнобедренный, то он также равносторонний, и у него все углы при основании равны. Значит, треугольники ABD и ACD подобны, и соответственно, AD/AC = BD/AB и AD/AC = CD/AC. Так как AB = AC, то BD = CD, что означает, что высоты, проведенные к боковым сторонам, равны.
3) Для построения треугольника по стороне и двум прилежащим углам нужно выполнить следующие шаги:
- Нарисовать отрезок, который будет являться одной из сторон треугольника.
- Из одного конца этого отрезка провести луч, образующий с этим отрезком один из заданных углов.
- Из другого конца отрезка провести луч, образующий с этим отрезком другой заданный угол.
- Точка пересечения этих двух лучей будет вершиной треугольника.
- Провести третью сторону треугольника, соединяющую вершину с точками пересечения лучей.
Дополнительно:
Для нахождения гипотенузы прямоугольного треугольника, где один из углов равен 60°, а сумма гипотенузы и меньшего катета равна 42 см, можно воспользоваться формулой косинуса для прямоугольного треугольника:
cos(60°) = adjacent / hypotenuse
cos(60°) = 1/2
Так как adjacent = 42 - smaller leg (меньший катет), то:
1/2 = (42 - smaller leg) / hypotenuse
hypotenuse = (42 - smaller leg) / (1/2)
hypotenuse = 2 * (42 - smaller leg)
hypotenuse = 84 - 2 * smaller leg
Так как у нас есть прямоугольный треугольник с углом 60°, то меньший катет равен hypotenuse * sin(60°):
smaller leg = hypotenuse * sin(60°)
smaller leg = (84 - 2 * smaller leg) * sin(60°)
smaller leg = 84 * sin(60°) - 2 * smaller leg * sin(60°)
smaller leg + 2 * smaller leg * sin(60°) = 84 * sin(60°)
smaller leg(1 + 2 * sin(60°)) = 84 * sin(60°)
smaller leg = (84 * sin(60°)) / (1 + 2 * sin(60°))
Теперь подставляем найденное значение меньшего катета в формулу для нахождения гипотенузы:
hypotenuse = 84 - 2 * smaller leg
Таким образом, мы можем найти гипотенузу прямоугольного треугольника.
0
·
Хороший ответ
27 апреля 2024 03:54
Остались вопросы?
Еще вопросы по категории Математика
Сколько килограммов в 10 граммах?...
постройте угол 120 градусов из вершины угла проведите луч так чтобы один из образовавшихся углов был 30 больше другого определите величины получивших...
Если есть 10 центнеров, то сколько это килограммов?...
Как расставить 7 стульев у 4 стен комнаты, чтобы у каждой стены было их поровну?...
Величины двух углов параллелограмма относятся как 3:7. Найдите меньший угол....