Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Через вершины A и C треугольника ABC, площадь которого равна 10 корней из 3 проведена окружность, пересекающая сторону AB в точке M, а продолжение стороны BC – в точке N. Центр окружности, описанной около треугольника ABC, лежит на отрезке MN. Найти длину MN, если известно, что BC = 5, угол ABC = 60°.
1
ответ
Для начала обозначим центр описанной окружности как O. Так как центр описанной окружности лежит на отрезке MN, то он также лежит на перпендикуляре к стороне AB, проходящем через середину этой стороны.
Так как площадь треугольника ABC равна 10 корням из 3, то ее можно выразить через стороны и углы треугольника: \( S = \frac{1}{2} \cdot AB \cdot BC \cdot \sin \angle ABC \).
Из условия известно, что BC = 5 и угол ABC = 60°, поэтому площадь треугольника ABC равна 10 корням из 3: \( 10\sqrt{3} = \frac{1}{2} \cdot AB \cdot 5 \cdot \sin 60° \).
Отсюда находим длину стороны AB: \( AB = \frac{10\sqrt{3}}{\frac{5 \cdot \sqrt{3}}{2}} = 4 \).
Так как центр окружности, описанной около треугольника ABC, лежит на перпендикуляре к стороне AB, проходящем через середину этой стороны, то точка O также является серединой стороны AB.
Таким образом, длина отрезка MN равна половине длины стороны AB: \( MN = \frac{AB}{2} = \frac{4}{2} = 2 \). Получаем, что длина отрезка MN равна 2.
Так как площадь треугольника ABC равна 10 корням из 3, то ее можно выразить через стороны и углы треугольника: \( S = \frac{1}{2} \cdot AB \cdot BC \cdot \sin \angle ABC \).
Из условия известно, что BC = 5 и угол ABC = 60°, поэтому площадь треугольника ABC равна 10 корням из 3: \( 10\sqrt{3} = \frac{1}{2} \cdot AB \cdot 5 \cdot \sin 60° \).
Отсюда находим длину стороны AB: \( AB = \frac{10\sqrt{3}}{\frac{5 \cdot \sqrt{3}}{2}} = 4 \).
Так как центр окружности, описанной около треугольника ABC, лежит на перпендикуляре к стороне AB, проходящем через середину этой стороны, то точка O также является серединой стороны AB.
Таким образом, длина отрезка MN равна половине длины стороны AB: \( MN = \frac{AB}{2} = \frac{4}{2} = 2 \). Получаем, что длина отрезка MN равна 2.
0
·
Хороший ответ
3 мая 2024 17:39
Остались вопросы?
Еще вопросы по категории Геометрия
Помогите пожалуйста! Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=78∘ и ∠OAB=69∘. Найдите угол BCO. Ответ дайте в г...
В △ABC высоты пересекаются в точке H, а биссектрисы в точке Q, ∠AQC=100°. Определи градусную меру угла AHC....
Верно ли, что через две пересекающиеся прямые можно всегда провести плоскость?...
Две плоскости параллельны между собой. Из точки F. не лежащей ни в одной из этих плоскостей, ни между плоскостями, проведены две прямые. пересекающие...
В прямоугольной трапеции ABCD(угол A=90°) известно, что AB=4см, AD=15 см, BC=12см. Найдите величину |вектор AB- вектор AD+ вектор BC|....
Все предметы