Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
5 мая 2024 21:58
316
В треугольнике PQR стороны PR,PQ, и QR равны 9,6,5 соответственно. Точка S расположена вне трехугольника PQR, причём отрезок SR пересекает строну PQ в точке, отличной от Q. Известно, что треугольник с вершинами S,P и R подобен исходному. Найдите косинус угла PSR, если угол SRP тупой.
1
ответ
Для решения этой задачи мы можем воспользоваться теоремой косинусов.
Пусть угол PSR равен α. Так как треугольник SPR подобен треугольнику PQR, то соответствующие стороны этих треугольников пропорциональны. Таким образом, мы можем записать:
SR/PR = SP/PQ.
Из условия задачи известно, что PR = 9, PQ = 6, QR = 5. Также из условия следует, что SR > PQ, поэтому SR = PQ + x, где x - некоторое положительное число.
Теперь подставим известные значения и полученное равенство в теорему косинусов для треугольника SPR:
cos(α) = (SP^2 + PR^2 - SR^2) / (2 * SP * PR).
Подставляем значения сторон:
cos(α) = (SP^2 + 81 - (PQ + x)^2) / (2 * SP * 9).
Так как треугольник SPR подобен треугольнику PQR, отношение сторон SP/PQ равно отношению сторон PR/QR:
SP/PQ = PR/QR,
SP/6 = 9/5,
SP = 54/5.
Теперь подставляем значение SP в формулу для cos(α) и упрощаем:
cos(α) = (2916/25 + 81 - (6 + x)^2) / (18 * 9).
Так как угол SRP тупой, то cos(α) < 0.
Таким образом, косинус угла PSR равен:
cos(α) = (2916/25 + 81 - (6 + x)^2) / 162.
Пусть угол PSR равен α. Так как треугольник SPR подобен треугольнику PQR, то соответствующие стороны этих треугольников пропорциональны. Таким образом, мы можем записать:
SR/PR = SP/PQ.
Из условия задачи известно, что PR = 9, PQ = 6, QR = 5. Также из условия следует, что SR > PQ, поэтому SR = PQ + x, где x - некоторое положительное число.
Теперь подставим известные значения и полученное равенство в теорему косинусов для треугольника SPR:
cos(α) = (SP^2 + PR^2 - SR^2) / (2 * SP * PR).
Подставляем значения сторон:
cos(α) = (SP^2 + 81 - (PQ + x)^2) / (2 * SP * 9).
Так как треугольник SPR подобен треугольнику PQR, отношение сторон SP/PQ равно отношению сторон PR/QR:
SP/PQ = PR/QR,
SP/6 = 9/5,
SP = 54/5.
Теперь подставляем значение SP в формулу для cos(α) и упрощаем:
cos(α) = (2916/25 + 81 - (6 + x)^2) / (18 * 9).
Так как угол SRP тупой, то cos(α) < 0.
Таким образом, косинус угла PSR равен:
cos(α) = (2916/25 + 81 - (6 + x)^2) / 162.
0
·
Хороший ответ
5 мая 2024 22:00
Остались вопросы?
Еще вопросы по категории Математика
Рабочие должны посадить 350 саженцев кустов. В первый день они посадили одну седьмую часть всех саженцев. Это в 2 раза меньше, чем во второй день. Пос...
Поступивший в продажу в апреле мобильный телефон стоил 4400 рублей. В августе он стал стоить 3080 рублей. На сколько процентов сни...
запишите отношения в виде дробей и сократите если можно 36:27 128:192 49:35 119:63 25:65???? Пожалуйста помогите очень срочно...
Какое число является самым большим в задании?...
Чтобы найти производительность надо .. что надо ?...