Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
In(x)/x²→∞, в то время x→0 слева, а
In(x)/x²→-∞, в то время как x→0 справа, следовательно, x=0- вертикальная асимптота.
x=0
Не принимая во внимание логарифм, рассмотрим рациональную функцию
R(x) = axⁿ/bx^m, где n- степень числителя, а m степень знаменателя.
1. если n<m, то ось x, y=0, является горизонтальной асимптотой.
2. если n=m, то горизонтальной асимптотой является прямая y= a/b
Если n>m , то не существует горизонтальной асимптоты (только наклонная асимптота).
Найдем m и n
n=0
m=2
Поскольку n<m, ось X, y=0
, является горизонтальной асимптотой.
y=0
Для логарифмических и тригонометрических функций не существует наклонных асимптот.
Нет наклонных асимптот
Это множество всех асимптот.
Вертикальные асимптоты: x=0
Горизонтальные асимптоты: y=0
In(x)/x²→-∞, в то время как x→0 справа, следовательно, x=0- вертикальная асимптота.
x=0
Не принимая во внимание логарифм, рассмотрим рациональную функцию
R(x) = axⁿ/bx^m, где n- степень числителя, а m степень знаменателя.
1. если n<m, то ось x, y=0, является горизонтальной асимптотой.
2. если n=m, то горизонтальной асимптотой является прямая y= a/b
Если n>m , то не существует горизонтальной асимптоты (только наклонная асимптота).
Найдем m и n
n=0
m=2
Поскольку n<m, ось X, y=0
, является горизонтальной асимптотой.
y=0
Для логарифмических и тригонометрических функций не существует наклонных асимптот.
Нет наклонных асимптот
Это множество всех асимптот.
Вертикальные асимптоты: x=0
Горизонтальные асимптоты: y=0
0
·
Хороший ответ
11 ноября 2022 10:53
Остались вопросы?
Еще вопросы по категории Алгебра
Упростите 1)√32+√50-√98 2) √147+√12+√75 3)√20+2√45-3√500...
Ребята, как определить ветви параболы вверх или вниз? Как это определить? Вверх или вниз... Объясните. не понимаю....
Решите графически систему уравнений: 1]" data-testid="answer_box_list"> Р...
2x + 3y = 0 x - y = 5 Знайти x...
Найдите 4 последовательных натуральных числа,если известно,что произведение 3-го и 4-го чисел больше произведения 1-го и 2-го на 34...