Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для решения этой задачи мы можем воспользоваться теоремой косинусов.
Теорема косинусов гласит: \( c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \), где \( c \) - длина стороны противолежащей углу \( C \), \( a \) и \( b \) - длины других двух сторон, \( C \) - угол противолежащий стороне \( c \).
В нашем случае \( c = BC = 3\sqrt{2} \), \( a = AC = 6 \), \( C = 135^\circ \).
Подставим известные значения в формулу теоремы косинусов:
\[ (3\sqrt{2})^2 = 6^2 + b^2 - 2 \cdot 6 \cdot b \cdot \cos(135^\circ) \]
\[ 18 = 36 + b^2 + 12b \cdot \frac{-\sqrt{2}}{2} \]
\[ 18 = 36 + b^2 - 6b\sqrt{2} \]
\[ b^2 - 6b\sqrt{2} - 18 = 0 \]
Решив квадратное уравнение, найдем значение стороны \( AB \).
Теорема косинусов гласит: \( c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \), где \( c \) - длина стороны противолежащей углу \( C \), \( a \) и \( b \) - длины других двух сторон, \( C \) - угол противолежащий стороне \( c \).
В нашем случае \( c = BC = 3\sqrt{2} \), \( a = AC = 6 \), \( C = 135^\circ \).
Подставим известные значения в формулу теоремы косинусов:
\[ (3\sqrt{2})^2 = 6^2 + b^2 - 2 \cdot 6 \cdot b \cdot \cos(135^\circ) \]
\[ 18 = 36 + b^2 + 12b \cdot \frac{-\sqrt{2}}{2} \]
\[ 18 = 36 + b^2 - 6b\sqrt{2} \]
\[ b^2 - 6b\sqrt{2} - 18 = 0 \]
Решив квадратное уравнение, найдем значение стороны \( AB \).
0
·
Хороший ответ
18 сентября 2024 13:45
Остались вопросы?
Еще вопросы по категории Геометрия
Средние линии треугольника относятся как 2 : 3 : 4, а периметр треугольника равен 45 см. Найдите стороны треугольника. НУЖЕН РИСУНОК И ДАНО...
Как найти высоту ромба если известна сторона 10 (см) и угол 150 градусов?...
• Изобразите самостоятельно в тетради любые два неколлинеарных вектора а и в. С вашими векторами выполните задание. • А) Сложить а+в двумя способами...
Реши задачу и запиши ответ Треугольник ABC-равнобедренный, из угла С проведена высота CH. AB = 4 см — Основание, а сторона ВС = 8 см. Найди СН....
Чему равен корень из 48?...