Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
22 сентября 2024 15:52
221
Шар диаметром 6 см катится без скольжения по горизонтальной плоскости, делая 4 оборота в секунду. Масса шара 0,25 кг. Найти кинетическую энергию катящегося шара.
1
ответ
Для нахождения кинетической энергии катящегося шара воспользуемся формулой:
\[ E_k = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 \]
где:
- \( E_k \) - кинетическая энергия,
- \( I \) - момент инерции,
- \( \omega \) - угловая скорость,
- \( m \) - масса шара,
- \( v \) - линейная скорость.
У нас дано, что шар катится без скольжения, поэтому \( v = R \cdot \omega \), где \( R \) - радиус шара.
Для шара \( I = \frac{2}{5} m R^2 \), где \( R = \frac{d}{2} = \frac{6}{2} = 3 \, \text{см} = 0.03 \, \text{м} \).
Теперь найдем угловую скорость \( \omega = 2\pi \cdot n \), где \( n \) - количество оборотов в секунду.
Подставим все значения в формулу:
\[ \omega = 2\pi \cdot 4 = 8\pi \, \text{рад/с} \]
\[ I = \frac{2}{5} \cdot 0.25 \cdot (0.03)^2 = 0.000045 \, \text{кг} \cdot \text{м}^2 \]
\[ v = 0.03 \cdot 8\pi = 0.0942 \, \text{м/с} \]
Теперь можем найти кинетическую энергию:
\[ E_k = \frac{1}{2} \cdot 0.000045 \cdot (8\pi)^2 + \frac{1}{2} \cdot 0.25 \cdot 0.0942^2 \]
\[ E_k \approx 0.113 \, \text{Дж} \]
Таким образом, кинетическая энергия катящегося шара составляет примерно 0.113 Дж.
\[ E_k = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 \]
где:
- \( E_k \) - кинетическая энергия,
- \( I \) - момент инерции,
- \( \omega \) - угловая скорость,
- \( m \) - масса шара,
- \( v \) - линейная скорость.
У нас дано, что шар катится без скольжения, поэтому \( v = R \cdot \omega \), где \( R \) - радиус шара.
Для шара \( I = \frac{2}{5} m R^2 \), где \( R = \frac{d}{2} = \frac{6}{2} = 3 \, \text{см} = 0.03 \, \text{м} \).
Теперь найдем угловую скорость \( \omega = 2\pi \cdot n \), где \( n \) - количество оборотов в секунду.
Подставим все значения в формулу:
\[ \omega = 2\pi \cdot 4 = 8\pi \, \text{рад/с} \]
\[ I = \frac{2}{5} \cdot 0.25 \cdot (0.03)^2 = 0.000045 \, \text{кг} \cdot \text{м}^2 \]
\[ v = 0.03 \cdot 8\pi = 0.0942 \, \text{м/с} \]
Теперь можем найти кинетическую энергию:
\[ E_k = \frac{1}{2} \cdot 0.000045 \cdot (8\pi)^2 + \frac{1}{2} \cdot 0.25 \cdot 0.0942^2 \]
\[ E_k \approx 0.113 \, \text{Дж} \]
Таким образом, кинетическая энергия катящегося шара составляет примерно 0.113 Дж.
0
·
Хороший ответ
22 сентября 2024 15:54
Остались вопросы?
Еще вопросы по категории Физика
Выразить из формулы ускорения a= V-V0/t время и начальную скорость. Срочно!!...
Найдите силу тяжести действующую на тело массой 4т. изобразите эту силу на рисунке...
Максимальный заряд конденсатора в колебательном контуре 6мкКл. Индуктивность катушки 3мГн, электроёмкость конденсатора 2 мкФ. В некоторый момент време...
Луч естественного света последовательно проходит через поляризатор и анализатор, угол между главными плоскостями которых 60°. Какая доля ...
Допишите недостающие обозначения в цепочке радиоактивных превращений...