Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
22 сентября 2024 15:52
296
Шар диаметром 6 см катится без скольжения по горизонтальной плоскости, делая 4 оборота в секунду. Масса шара 0,25 кг. Найти кинетическую энергию катящегося шара.
1
ответ
Для нахождения кинетической энергии катящегося шара воспользуемся формулой:
\[ E_k = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 \]
где:
- \( E_k \) - кинетическая энергия,
- \( I \) - момент инерции,
- \( \omega \) - угловая скорость,
- \( m \) - масса шара,
- \( v \) - линейная скорость.
У нас дано, что шар катится без скольжения, поэтому \( v = R \cdot \omega \), где \( R \) - радиус шара.
Для шара \( I = \frac{2}{5} m R^2 \), где \( R = \frac{d}{2} = \frac{6}{2} = 3 \, \text{см} = 0.03 \, \text{м} \).
Теперь найдем угловую скорость \( \omega = 2\pi \cdot n \), где \( n \) - количество оборотов в секунду.
Подставим все значения в формулу:
\[ \omega = 2\pi \cdot 4 = 8\pi \, \text{рад/с} \]
\[ I = \frac{2}{5} \cdot 0.25 \cdot (0.03)^2 = 0.000045 \, \text{кг} \cdot \text{м}^2 \]
\[ v = 0.03 \cdot 8\pi = 0.0942 \, \text{м/с} \]
Теперь можем найти кинетическую энергию:
\[ E_k = \frac{1}{2} \cdot 0.000045 \cdot (8\pi)^2 + \frac{1}{2} \cdot 0.25 \cdot 0.0942^2 \]
\[ E_k \approx 0.113 \, \text{Дж} \]
Таким образом, кинетическая энергия катящегося шара составляет примерно 0.113 Дж.
\[ E_k = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 \]
где:
- \( E_k \) - кинетическая энергия,
- \( I \) - момент инерции,
- \( \omega \) - угловая скорость,
- \( m \) - масса шара,
- \( v \) - линейная скорость.
У нас дано, что шар катится без скольжения, поэтому \( v = R \cdot \omega \), где \( R \) - радиус шара.
Для шара \( I = \frac{2}{5} m R^2 \), где \( R = \frac{d}{2} = \frac{6}{2} = 3 \, \text{см} = 0.03 \, \text{м} \).
Теперь найдем угловую скорость \( \omega = 2\pi \cdot n \), где \( n \) - количество оборотов в секунду.
Подставим все значения в формулу:
\[ \omega = 2\pi \cdot 4 = 8\pi \, \text{рад/с} \]
\[ I = \frac{2}{5} \cdot 0.25 \cdot (0.03)^2 = 0.000045 \, \text{кг} \cdot \text{м}^2 \]
\[ v = 0.03 \cdot 8\pi = 0.0942 \, \text{м/с} \]
Теперь можем найти кинетическую энергию:
\[ E_k = \frac{1}{2} \cdot 0.000045 \cdot (8\pi)^2 + \frac{1}{2} \cdot 0.25 \cdot 0.0942^2 \]
\[ E_k \approx 0.113 \, \text{Дж} \]
Таким образом, кинетическая энергия катящегося шара составляет примерно 0.113 Дж.
0
·
Хороший ответ
22 сентября 2024 15:54
Остались вопросы?
Еще вопросы по категории Физика
Помогите с физикой! Частица участвует одновременно в двух гармонических колебаниях, совершающихся по взаимно перпендикулярным направлениям. Заданы ч...
Умоляяяю! помогитеее! срочно надоооо! 2 и 3 задачи!...
Группе туристов нужно было пройти за день 30 км по просёлочной дороге...
в однородном магнитном поле с индукцией 0,8 Тл на проводник с током 30 А, длина активной части которого 10 см, действует сила 1,5 Н. Под каким углом к...
Радиостанция работает на частоте 100 МГц. На какую длину волны должен быть настроен радиоприемник?...