Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
22 сентября 2024 15:52
75
Шар диаметром 6 см катится без скольжения по горизонтальной плоскости, делая 4 оборота в секунду. Масса шара 0,25 кг. Найти кинетическую энергию катящегося шара.
1
ответ
Для нахождения кинетической энергии катящегося шара воспользуемся формулой:
\[ E_k = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 \]
где:
- \( E_k \) - кинетическая энергия,
- \( I \) - момент инерции,
- \( \omega \) - угловая скорость,
- \( m \) - масса шара,
- \( v \) - линейная скорость.
У нас дано, что шар катится без скольжения, поэтому \( v = R \cdot \omega \), где \( R \) - радиус шара.
Для шара \( I = \frac{2}{5} m R^2 \), где \( R = \frac{d}{2} = \frac{6}{2} = 3 \, \text{см} = 0.03 \, \text{м} \).
Теперь найдем угловую скорость \( \omega = 2\pi \cdot n \), где \( n \) - количество оборотов в секунду.
Подставим все значения в формулу:
\[ \omega = 2\pi \cdot 4 = 8\pi \, \text{рад/с} \]
\[ I = \frac{2}{5} \cdot 0.25 \cdot (0.03)^2 = 0.000045 \, \text{кг} \cdot \text{м}^2 \]
\[ v = 0.03 \cdot 8\pi = 0.0942 \, \text{м/с} \]
Теперь можем найти кинетическую энергию:
\[ E_k = \frac{1}{2} \cdot 0.000045 \cdot (8\pi)^2 + \frac{1}{2} \cdot 0.25 \cdot 0.0942^2 \]
\[ E_k \approx 0.113 \, \text{Дж} \]
Таким образом, кинетическая энергия катящегося шара составляет примерно 0.113 Дж.
\[ E_k = \frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 \]
где:
- \( E_k \) - кинетическая энергия,
- \( I \) - момент инерции,
- \( \omega \) - угловая скорость,
- \( m \) - масса шара,
- \( v \) - линейная скорость.
У нас дано, что шар катится без скольжения, поэтому \( v = R \cdot \omega \), где \( R \) - радиус шара.
Для шара \( I = \frac{2}{5} m R^2 \), где \( R = \frac{d}{2} = \frac{6}{2} = 3 \, \text{см} = 0.03 \, \text{м} \).
Теперь найдем угловую скорость \( \omega = 2\pi \cdot n \), где \( n \) - количество оборотов в секунду.
Подставим все значения в формулу:
\[ \omega = 2\pi \cdot 4 = 8\pi \, \text{рад/с} \]
\[ I = \frac{2}{5} \cdot 0.25 \cdot (0.03)^2 = 0.000045 \, \text{кг} \cdot \text{м}^2 \]
\[ v = 0.03 \cdot 8\pi = 0.0942 \, \text{м/с} \]
Теперь можем найти кинетическую энергию:
\[ E_k = \frac{1}{2} \cdot 0.000045 \cdot (8\pi)^2 + \frac{1}{2} \cdot 0.25 \cdot 0.0942^2 \]
\[ E_k \approx 0.113 \, \text{Дж} \]
Таким образом, кинетическая энергия катящегося шара составляет примерно 0.113 Дж.
0
·
Хороший ответ
22 сентября 2024 15:54
Остались вопросы?
Еще вопросы по категории Физика
рассчитать на сколько погрузиться ПВХ баллон в воду, диаметр баллона 64 см, длинна баллона 7000 см, масса тела погруженная на баллон 300 кг...
Какое количество теплоты потребуется для обращения в воду льда массой 2 кг, взятого при 0 °С, и дальнейшего нагревания образовавшейся воды до температ...
Отношение работы ко времени за которое она была совершена...
Решите физику пожалуйста...
На рисунке показан график зависимости силы переменного тока от времени. По какому закону меняется переменный ток? 1)i=15sin5-10^4пt 2)i=15sin10^3пt 3)...
Все предметы