Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
7 октября 2024 18:10
93
Большое основание равнобедренной трапеции в два раза больше малого основания. Диагональ трапеции делит его острый угол на равные части. Найдите малое основание трапеции,если периметр трапеции равна 60 см.
1
ответ
Давайте обозначим малое основание трапеции как "х". Тогда большое основание будет равно "2х".
Периметр трапеции равен сумме длин всех сторон. В данном случае у нас есть две равные стороны (боковые стороны равнобедренной трапеции), каждая из которых равна длине диагонали. Также у нас есть две основания трапеции.
Из условия задачи мы знаем, что периметр трапеции равен 60 см. Поэтому у нас есть уравнение:
х + 2х + 2d = 60,
где d - длина диагонали.
Так как диагональ делит острый угол на равные части, то у нас получается два равнобедренных прямоугольных треугольника. Пусть катеты этих треугольников равны "х" и "d", а гипотенуза равна большему основанию "2х". Тогда по теореме Пифагора получаем:
х^2 + d^2 = (2х)^2.
Разрешим это уравнение относительно "d":
x^2 + d^2 = 4x^2,
d^2 = 3x^2,
d = √3x.
Подставим это значение диагонали в уравнение периметра:
х + 2х + 2√3x = 60,
3х + 2√3x = 60,
x(3 + 2√3) = 60,
x = 60 / (3 + 2√3).
Таким образом, малое основание трапеции равно 60 / (3 + 2√3) ≈ 7.07 см.
Периметр трапеции равен сумме длин всех сторон. В данном случае у нас есть две равные стороны (боковые стороны равнобедренной трапеции), каждая из которых равна длине диагонали. Также у нас есть две основания трапеции.
Из условия задачи мы знаем, что периметр трапеции равен 60 см. Поэтому у нас есть уравнение:
х + 2х + 2d = 60,
где d - длина диагонали.
Так как диагональ делит острый угол на равные части, то у нас получается два равнобедренных прямоугольных треугольника. Пусть катеты этих треугольников равны "х" и "d", а гипотенуза равна большему основанию "2х". Тогда по теореме Пифагора получаем:
х^2 + d^2 = (2х)^2.
Разрешим это уравнение относительно "d":
x^2 + d^2 = 4x^2,
d^2 = 3x^2,
d = √3x.
Подставим это значение диагонали в уравнение периметра:
х + 2х + 2√3x = 60,
3х + 2√3x = 60,
x(3 + 2√3) = 60,
x = 60 / (3 + 2√3).
Таким образом, малое основание трапеции равно 60 / (3 + 2√3) ≈ 7.07 см.
0
·
Хороший ответ
7 октября 2024 18:12
Остались вопросы?
Еще вопросы по категории Математика
Выполните действия: 1) (3/4 + 1/20) × 1/2=? 2) (7/12 - 1/3) × 16/19=? 3) (7 3/5 - 2 4/15) × 9/32=? 4) (11/24 + 1/6) × 1 3/5=? 5) (5 1/2 + 2 3/5) ×...
Какой тип данных имеют числа в задании '0 35 1'?...
Чему равна сумма чисел 1 и 6?...
Саша,Коля и Серёжа собрали 51 стакан малины.Серёжа собрал в 2 раза больше малины,чем Саша,а Коля на 3 стакана больше,чем Саша.Сколько стаканов малины...
Вопрос: Какое число получится, если умножить 10 на 3?...