Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
17 октября 2024 01:31
113
Площадь осевого сечения цилиндра равна 7 м?, а площадь основания равна 4 м?. Найдите высоту цилиндра.
1
ответ
Для нахождения высоты цилиндра можно воспользоваться формулой:
\[ V = S_{\text{основания}} \times h \]
Где \( V \) - объем цилиндра, \( S_{\text{основания}} \) - площадь основания, \( h \) - высота цилиндра.
Так как площадь основания равна 4 м², а площадь осевого сечения равна 7 м², то площадь боковой поверхности цилиндра равна разнице между площадью осевого сечения и площадью основания:
\[ S_{\text{боковой поверхности}} = S_{\text{осевого сечения}} - S_{\text{основания}} = 7 - 4 = 3 \, \text{м²} \]
Так как боковая поверхность цилиндра представляет собой прямоугольник, то ее площадь равна произведению периметра основания на высоту:
\[ S_{\text{боковой поверхности}} = 2 \pi r \times h \]
Где \( r \) - радиус основания цилиндра. Поскольку радиус неизвестен, но известна площадь основания, то можно найти радиус:
\[ S_{\text{основания}} = \pi r^2 \]
\[ 4 = \pi r^2 \]
\[ r^2 = \frac{4}{\pi} \]
\[ r = \sqrt{\frac{4}{\pi}} \]
Теперь можно найти высоту цилиндра:
\[ 3 = 2 \pi \sqrt{\frac{4}{\pi}} \times h \]
\[ h = \frac{3}{2 \pi \sqrt{\frac{4}{\pi}}} \approx 0.477 \, \text{м} \]
Таким образом, высота цилиндра составляет примерно 0.477 м.
\[ V = S_{\text{основания}} \times h \]
Где \( V \) - объем цилиндра, \( S_{\text{основания}} \) - площадь основания, \( h \) - высота цилиндра.
Так как площадь основания равна 4 м², а площадь осевого сечения равна 7 м², то площадь боковой поверхности цилиндра равна разнице между площадью осевого сечения и площадью основания:
\[ S_{\text{боковой поверхности}} = S_{\text{осевого сечения}} - S_{\text{основания}} = 7 - 4 = 3 \, \text{м²} \]
Так как боковая поверхность цилиндра представляет собой прямоугольник, то ее площадь равна произведению периметра основания на высоту:
\[ S_{\text{боковой поверхности}} = 2 \pi r \times h \]
Где \( r \) - радиус основания цилиндра. Поскольку радиус неизвестен, но известна площадь основания, то можно найти радиус:
\[ S_{\text{основания}} = \pi r^2 \]
\[ 4 = \pi r^2 \]
\[ r^2 = \frac{4}{\pi} \]
\[ r = \sqrt{\frac{4}{\pi}} \]
Теперь можно найти высоту цилиндра:
\[ 3 = 2 \pi \sqrt{\frac{4}{\pi}} \times h \]
\[ h = \frac{3}{2 \pi \sqrt{\frac{4}{\pi}}} \approx 0.477 \, \text{м} \]
Таким образом, высота цилиндра составляет примерно 0.477 м.
1
·
Хороший ответ
17 октября 2024 01:33
Остались вопросы?
Еще вопросы по категории Геометрия
Используя данные,приведённые на рисунке, укажите номера верных утверждений и объясните пожалуйста.срочно...
Плоский угол при вершине правильной четырехугольной пирамиды равен 60. Вычислите отношение площади боковой поверхности пирамиды к площади ее основания...
Параллельные плоскости альфа и бета пересекают сторону АВ угла ВАС соответственно в точках А1 и А2, а сторону АС этого угла в В1 и В2. Найти АА1 если...
ПОЖАЛУЙСТА Найдите площадь ромба, сторона которого равна 4 см, а тупой угол составляет 150...
треугольники ABC и A1B1C1 подобны, причем сторонам AC и BC соответствуют стороны A1C1 и B1C1. Найдите неизвестные стороны этих треугольников, если AC...