Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
17 октября 2024 02:50
64
Площадь осевого сечения цилиндра равна 6 м2, а площадь основания равна 5 м2. Найдите высоту цилиндра.
1
ответ
Для решения этой задачи нам нужно знать формулу для площади поверхности цилиндра. Площадь поверхности цилиндра складывается из площади двух оснований и площади боковой поверхности.
Площадь основания цилиндра равна 5 м², а площадь осевого сечения (боковой поверхности) равна 6 м². Площадь боковой поверхности цилиндра можно найти по формуле: \(S = 2 \cdot \pi \cdot r \cdot h\), где \(r\) - радиус основания цилиндра, а \(h\) - высота цилиндра.
Из условия задачи известно, что \(S = 6\ м²\) и \(S_{\text{основания}} = 5\ м²\). Также известно, что площадь основания равна площади круга, то есть \(S_{\text{основания}} = \pi \cdot r^2\), откуда найдем радиус основания: \(r = \sqrt{\frac{S_{\text{основания}}}{\pi}} = \sqrt{\frac{5}{\pi}}\).
Теперь можем подставить известные значения в формулу для площади боковой поверхности и решить уравнение относительно высоты \(h\):
\(6 = 2 \cdot \pi \cdot \sqrt{\frac{5}{\pi}} \cdot h\)
\(h = \frac{6}{2 \cdot \pi \cdot \sqrt{\frac{5}{\pi}}}\)
\(h ≈ \frac{6}{2 \cdot 3.14 \cdot \sqrt{\frac{5}{3.14}}} ≈ \frac{6}{6.28 \cdot \sqrt{1.59}} ≈ \frac{6}{6.28 \cdot 1.26} ≈ \frac{6}{7.9248} ≈ 0.756\ м\).
Таким образом, высота цилиндра составляет около 0.756 метра.
Площадь основания цилиндра равна 5 м², а площадь осевого сечения (боковой поверхности) равна 6 м². Площадь боковой поверхности цилиндра можно найти по формуле: \(S = 2 \cdot \pi \cdot r \cdot h\), где \(r\) - радиус основания цилиндра, а \(h\) - высота цилиндра.
Из условия задачи известно, что \(S = 6\ м²\) и \(S_{\text{основания}} = 5\ м²\). Также известно, что площадь основания равна площади круга, то есть \(S_{\text{основания}} = \pi \cdot r^2\), откуда найдем радиус основания: \(r = \sqrt{\frac{S_{\text{основания}}}{\pi}} = \sqrt{\frac{5}{\pi}}\).
Теперь можем подставить известные значения в формулу для площади боковой поверхности и решить уравнение относительно высоты \(h\):
\(6 = 2 \cdot \pi \cdot \sqrt{\frac{5}{\pi}} \cdot h\)
\(h = \frac{6}{2 \cdot \pi \cdot \sqrt{\frac{5}{\pi}}}\)
\(h ≈ \frac{6}{2 \cdot 3.14 \cdot \sqrt{\frac{5}{3.14}}} ≈ \frac{6}{6.28 \cdot \sqrt{1.59}} ≈ \frac{6}{6.28 \cdot 1.26} ≈ \frac{6}{7.9248} ≈ 0.756\ м\).
Таким образом, высота цилиндра составляет около 0.756 метра.
0
·
Хороший ответ
17 октября 2024 02:51
Остались вопросы?
Еще вопросы по категории Математика
Что означает восклицательный знак в математике?...
Сколько метров в 1000 сантиметрах?...
Какое задание подразумевает фраза '1 дес 2 ед'?...
0,4 + 1/8= 0,15 + 1/4= 3/4 + 0,8= 0,24 + 1/2= 3/20 + 0,25= 2/5 + 0,125= 6/25 + 0,5= 0,75 + 4/5...
Основные тригонометрические тождества: 2) Упростите выражения: а) (1 − соs t)(1 + соs t); б) sin2 t + 2 соs 2 t − 1; в) 1sin2t− 1; г) 1− соs 2 t 1− si...
Все предметы