Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
17 октября 2024 03:31
177
Вершины треугольника АВС лежат на сфере радиуса 17,12 см.Найдите расстояние от центра сферы до плоскости треугольника, если АВ= 16 см, ВС=30 см, АС-34 см.
1
ответ
Для решения этой задачи нам потребуется использовать формулу для расстояния от центра сферы до плоскости треугольника.
Дано:
Радиус сферы, r = 17,12 см
Стороны треугольника:
AB = 16 см
BC = 30 см
AC = 34 см
Сначала найдем площадь треугольника по формуле Герона:
p = (AB + BC + AC) / 2
p = (16 + 30 + 34) / 2
p = 40
S = √(p * (p - AB) * (p - BC) * (p - AC))
S = √(40 * (40 - 16) * (40 - 30) * (40 - 34))
S = √(40 * 24 * 10 * 6)
S = √57600
S = 240 см²
Теперь найдем высоту треугольника, опущенную из центра сферы на плоскость треугольника:
h = (3 * V) / (AB + BC + AC)
h = (3 * 240) / (16 + 30 + 34)
h = 720 / 80
h = 9 см
Таким образом, расстояние от центра сферы до плоскости треугольника равно 9 см.
Дано:
Радиус сферы, r = 17,12 см
Стороны треугольника:
AB = 16 см
BC = 30 см
AC = 34 см
Сначала найдем площадь треугольника по формуле Герона:
p = (AB + BC + AC) / 2
p = (16 + 30 + 34) / 2
p = 40
S = √(p * (p - AB) * (p - BC) * (p - AC))
S = √(40 * (40 - 16) * (40 - 30) * (40 - 34))
S = √(40 * 24 * 10 * 6)
S = √57600
S = 240 см²
Теперь найдем высоту треугольника, опущенную из центра сферы на плоскость треугольника:
h = (3 * V) / (AB + BC + AC)
h = (3 * 240) / (16 + 30 + 34)
h = 720 / 80
h = 9 см
Таким образом, расстояние от центра сферы до плоскости треугольника равно 9 см.
0
·
Хороший ответ
17 октября 2024 03:39
Остались вопросы?
Еще вопросы по категории Математика
Какой твой любимый вид транспорта?...
Какие качества личности проявлялись в творчестве Антона Чехова?...
Какой причастный оборот используется в предложении 'Он, прочитав письмо, улыбнулся'?...
двигатель за 7,5 часа расходует 111 литров горючео.сколько литров горючего израсходует двигатель за 1,8 час?...
По состоянию на 2019 год численность население Новосибирска составляет один миллион шестьсот восемнадцать тысяч тридцать девять человек. Запиши числен...