Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
23 октября 2024 07:15
33
вершины куба авсда1в1с1д1 имеют координаты а(3;-1;1),в(-1;-1;1),с(-1;3;1),с1(-1;3;5).найдите координаты вершин в1и d1
1
ответ
Для нахождения координат вершин \(V_1\) и \(D_1\) куба, нам необходимо использовать свойство куба, согласно которому противоположные вершины куба равноудалены от центра куба.
Известно, что центр куба находится в точке, которая является средним арифметическим координат всех вершин куба. Поэтому найдем координаты центра куба:
\(X_c = \frac{3 - 1 - 1 - 1}{4} = 0\)
\(Y_c = \frac{-1 - 1 + 3 + 3}{4} = 1\)
\(Z_c = \frac{1 + 1 + 1 + 5}{4} = 2\)
Таким образом, центр куба имеет координаты \(C(0;1;2)\).
Теперь найдем координаты вершины \(V_1\). Так как \(V\) и \(V_1\) являются противоположными вершинами куба, то координаты вершины \(V_1\) будут равны отражению координат вершины \(V\) относительно центра куба:
\(X_{V_1} = 2 \cdot X_c - X_V = 2 \cdot 0 - (-1) = 1\)
\(Y_{V_1} = 2 \cdot Y_c - Y_V = 2 \cdot 1 - (-1) = 3\)
\(Z_{V_1} = 2 \cdot Z_c - Z_V = 2 \cdot 2 - 1 = 3\)
Таким образом, координаты вершины \(V_1\) равны \(V_1(1;3;3)\).
Аналогично, найдем координаты вершины \(D_1\), которая является противоположной вершиной куба вершине \(D\):
\(X_{D_1} = 2 \cdot X_c - X_D = 2 \cdot 0 - (-1) = 1\)
\(Y_{D_1} = 2 \cdot Y_c - Y_D = 2 \cdot 1 - 3 = -1\)
\(Z_{D_1} = 2 \cdot Z_c - Z_D = 2 \cdot 2 - 1 = 3\)
Таким образом, координаты вершины \(D_1\) равны \(D_1(1;-1;3)\).
Известно, что центр куба находится в точке, которая является средним арифметическим координат всех вершин куба. Поэтому найдем координаты центра куба:
\(X_c = \frac{3 - 1 - 1 - 1}{4} = 0\)
\(Y_c = \frac{-1 - 1 + 3 + 3}{4} = 1\)
\(Z_c = \frac{1 + 1 + 1 + 5}{4} = 2\)
Таким образом, центр куба имеет координаты \(C(0;1;2)\).
Теперь найдем координаты вершины \(V_1\). Так как \(V\) и \(V_1\) являются противоположными вершинами куба, то координаты вершины \(V_1\) будут равны отражению координат вершины \(V\) относительно центра куба:
\(X_{V_1} = 2 \cdot X_c - X_V = 2 \cdot 0 - (-1) = 1\)
\(Y_{V_1} = 2 \cdot Y_c - Y_V = 2 \cdot 1 - (-1) = 3\)
\(Z_{V_1} = 2 \cdot Z_c - Z_V = 2 \cdot 2 - 1 = 3\)
Таким образом, координаты вершины \(V_1\) равны \(V_1(1;3;3)\).
Аналогично, найдем координаты вершины \(D_1\), которая является противоположной вершиной куба вершине \(D\):
\(X_{D_1} = 2 \cdot X_c - X_D = 2 \cdot 0 - (-1) = 1\)
\(Y_{D_1} = 2 \cdot Y_c - Y_D = 2 \cdot 1 - 3 = -1\)
\(Z_{D_1} = 2 \cdot Z_c - Z_D = 2 \cdot 2 - 1 = 3\)
Таким образом, координаты вершины \(D_1\) равны \(D_1(1;-1;3)\).
0
·
Хороший ответ
23 октября 2024 07:15
Остались вопросы?
Все предметы