Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 ноября 2024 14:09
242
ABCDE падобно A1B1C1D1E1 ED=3,A=70°,CD=5,E1=145°,A1B1=9,E1D1=5,BC=4 найти AB,B1C1,C1D1,AE,угол A1
1
ответ
Для решения этой задачи нам нужно использовать тригонометрические функции и свойства параллелограмма.
1. Найдем длину стороны AB:
AB = AE + EB
AB = AE + BC
AB = AE + 4
2. Найдем длину стороны B1C1:
B1C1 = BC = 4
3. Найдем длину стороны C1D1:
C1D1 = E1D1 = 5
4. Найдем длину стороны AE:
Посмотрим на треугольник AED. Мы знаем сторону ED = 3, угол A = 70° и угол E = 145°. Так как сумма углов треугольника равна 180°, то угол D = 180° - 70° - 145° = 35°.
Теперь мы можем использовать закон синусов:
sin(A) / AE = sin(D) / ED
sin(70°) / AE = sin(35°) / 3
AE = 3 * sin(70°) / sin(35°)
5. Найдем угол A1:
Посмотрим на треугольник A1B1C1. Мы знаем сторону A1B1 = 9, сторону B1C1 = 4 и угол E1 = 145°. Так как противоположный угол к стороне A1B1 равен углу A1, то угол A1 = 180° - угол B1 - угол E1.
Угол B1 можно найти, используя закон косинусов:
cos(B1) = (A1B1^2 + B1C1^2 - C1A1^2) / (2 * A1B1 * B1C1)
cos(B1) = (9^2 + 4^2 - 5^2) / (2 * 9 * 4)
cos(B1) = (81 + 16 - 25) / 72
cos(B1) = 72 / 72
B1 = arccos(1) = 0°
Теперь мы можем найти угол A1:
A1 = 180° - B1 - E1
A1 = 180° - 0° - 145°
A1 = 35°
Таким образом, мы нашли все необходимые значения:
AB = AE + 4
B1C1 = 4
C1D1 = 5
AE = 3 * sin(70°) / sin(35°)
A1 = 35°
1. Найдем длину стороны AB:
AB = AE + EB
AB = AE + BC
AB = AE + 4
2. Найдем длину стороны B1C1:
B1C1 = BC = 4
3. Найдем длину стороны C1D1:
C1D1 = E1D1 = 5
4. Найдем длину стороны AE:
Посмотрим на треугольник AED. Мы знаем сторону ED = 3, угол A = 70° и угол E = 145°. Так как сумма углов треугольника равна 180°, то угол D = 180° - 70° - 145° = 35°.
Теперь мы можем использовать закон синусов:
sin(A) / AE = sin(D) / ED
sin(70°) / AE = sin(35°) / 3
AE = 3 * sin(70°) / sin(35°)
5. Найдем угол A1:
Посмотрим на треугольник A1B1C1. Мы знаем сторону A1B1 = 9, сторону B1C1 = 4 и угол E1 = 145°. Так как противоположный угол к стороне A1B1 равен углу A1, то угол A1 = 180° - угол B1 - угол E1.
Угол B1 можно найти, используя закон косинусов:
cos(B1) = (A1B1^2 + B1C1^2 - C1A1^2) / (2 * A1B1 * B1C1)
cos(B1) = (9^2 + 4^2 - 5^2) / (2 * 9 * 4)
cos(B1) = (81 + 16 - 25) / 72
cos(B1) = 72 / 72
B1 = arccos(1) = 0°
Теперь мы можем найти угол A1:
A1 = 180° - B1 - E1
A1 = 180° - 0° - 145°
A1 = 35°
Таким образом, мы нашли все необходимые значения:
AB = AE + 4
B1C1 = 4
C1D1 = 5
AE = 3 * sin(70°) / sin(35°)
A1 = 35°
1
·
Хороший ответ
14 ноября 2024 14:12
Остались вопросы?
Еще вопросы по категории Геометрия
Отрезок в 36см разделён на четыре не равных друг другу части. Расстояние между серединами крайних частей равно 30см. Найдите расстояние между середина...
угол при вершине,противолежащей основанию равнобедренного треугольника,равен 30 градусов. боковая сторона треугольника равна 22. найдите площадь этого...
На стороне АС треугольника АВС отмечены точки Д и Е, АД = СЕ доказать, что если ВД = ВЕ, то АВ=ВС...
Высота BM, проведённая из вершины угла ромба ABCD образует со стороной AB угол 30,° AM=4 см. Найдите длину диагонали BD ромба, если точка M лежит на с...
Помогите...