Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
23 ноября 2024 13:26
56
В трапеции АВСD проведены диагонали ACи BD, пересекающиеся в точке О. Найдите отношение отрезков AO/OC диагонали АС, если площади трапеции ABCDи треугольника ВОС, прилегающего к основанию BC, соответственно равны SАВСD = 25 и SBOC =4.
1
ответ
Для начала заметим, что площадь треугольника ВОС равна половине произведения длин его основания и высоты, то есть \(S_{BOC} = \frac{1}{2} \cdot BC \cdot h\), где h - высота треугольника ВОС.
Так как треугольник ВОС прямоугольный (поскольку диагонали любой трапеции пересекаются под прямым углом), то высота h равна \(h = \frac{BD \cdot AC}{2 \cdot BC}\).
Теперь мы можем записать равенство для площадей: \(S_{ABCD} = S_{BOC} + S_{VOS}\), откуда получаем \(25 = 4 + \frac{1}{2} \cdot BC \cdot h\).
Подставляем найденное значение h и получаем уравнение для BC: \(25 = 4 + \frac{1}{2} \cdot BC \cdot \frac{BD \cdot AC}{2 \cdot BC}\).
Упрощаем и находим значение BC: \(BC = \frac{8}{3} \cdot \frac{BD \cdot AC}{AC + BD}\).
Теперь можем найти отношение отрезков AO/OC. Из подобия треугольников АОС и ВОС, получаем, что это отношение равно отношению высот треугольников ВОС и АС. То есть \(AO/OC = h_{VOS}/h_{AC} = \frac{BC}{AC}\).
Подставляем найденное значение BC и получаем ответ: \(AO/OC = \frac{8}{3} \cdot \frac{BD}{AC + BD}\).
Так как треугольник ВОС прямоугольный (поскольку диагонали любой трапеции пересекаются под прямым углом), то высота h равна \(h = \frac{BD \cdot AC}{2 \cdot BC}\).
Теперь мы можем записать равенство для площадей: \(S_{ABCD} = S_{BOC} + S_{VOS}\), откуда получаем \(25 = 4 + \frac{1}{2} \cdot BC \cdot h\).
Подставляем найденное значение h и получаем уравнение для BC: \(25 = 4 + \frac{1}{2} \cdot BC \cdot \frac{BD \cdot AC}{2 \cdot BC}\).
Упрощаем и находим значение BC: \(BC = \frac{8}{3} \cdot \frac{BD \cdot AC}{AC + BD}\).
Теперь можем найти отношение отрезков AO/OC. Из подобия треугольников АОС и ВОС, получаем, что это отношение равно отношению высот треугольников ВОС и АС. То есть \(AO/OC = h_{VOS}/h_{AC} = \frac{BC}{AC}\).
Подставляем найденное значение BC и получаем ответ: \(AO/OC = \frac{8}{3} \cdot \frac{BD}{AC + BD}\).
0
·
Хороший ответ
23 ноября 2024 13:27
Остались вопросы?
Еще вопросы по категории Математика
чему равна разница в остаточной стоимости при двух вариантах расчета стоимости актива на конец 5 года...
Вычислите предел 4.) lim x->∞ (√7x^2-5 -√7 × x)...
Какой корень уравнения 1 х 6 2?...
Какова химическая формула 1,2-дихлорпропана?...
Сколько натуральных чисел расположено на координатном луче левее числа 15?...