Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
24 ноября 2024 10:41
125
Вопрос 3 Рассмотрим числа вида n^2 -5n + 31 для натуральных n. Есть ли среди них точные квадраты? Если нет - в ответе напишите О. Если таких квадратов неограниченное количество, в ответе напишите (-1). Если их конечное число, напишите в ответе сумму всех значений n, при которых указанное выражение является квадратом.
1
ответ
Для решения данной задачи нужно найти все натуральные значения n, при которых n^2 - 5n + 31 является точным квадратом.
Выражение n^2 - 5n + 31 можно переписать в виде (n - 3)^2 + 22.
Таким образом, n^2 - 5n + 31 будет точным квадратом только в случае, если (n - 3)^2 + 22 является точным квадратом.
Поскольку 22 не является квадратом натурального числа, то уравнение (n - 3)^2 + 22 = m^2 не имеет решений для натуральных n и m, кроме случая m=0 и n=3.
Следовательно, среди чисел n^2 - 5n + 31 для натуральных n нет точных квадратов. Ответ: О.
Выражение n^2 - 5n + 31 можно переписать в виде (n - 3)^2 + 22.
Таким образом, n^2 - 5n + 31 будет точным квадратом только в случае, если (n - 3)^2 + 22 является точным квадратом.
Поскольку 22 не является квадратом натурального числа, то уравнение (n - 3)^2 + 22 = m^2 не имеет решений для натуральных n и m, кроме случая m=0 и n=3.
Следовательно, среди чисел n^2 - 5n + 31 для натуральных n нет точных квадратов. Ответ: О.
0
·
Хороший ответ
24 ноября 2024 10:42
Остались вопросы?
Еще вопросы по категории Математика
Чему равно 0,06 м в см?...
What is the equivalent of "11 45" in English time?...
Y=ln(x-8)-x+5 найти максимум...
Какое из чисел в задании является наибольшим?...
ПОМОГИТЕ Два ребра прямоугольного параллелепипеда,выходящие из одной вершины,равны 4 и 8.Диагональ параллелепипеда равна 9.Найдите третье ребро,выходя...