Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 ноября 2024 15:35
320
В тетраэдре ДАВС известно, что LDBC =
LACB = 90°, AD = DB, LADB = 60°.
AB = 13, DC = 15. Найди АС.
1
ответ
Для начала обратимся к теореме косинусов, чтобы найти длину отрезка AC.
Известно, что в треугольнике ADB у нас есть два равных отрезка AD = DB, а угол между ними равен 60°. Тогда по теореме косинусов для треугольника ADB:
\(AB^2 = AD^2 + DB^2 - 2 \cdot AD \cdot DB \cdot \cos(60^\circ)\)
Подставляя известные значения, получаем:
\(13^2 = AD^2 + AD^2 - 2 \cdot AD^2 \cdot \cos(60^\circ)\)
\(169 = 2 \cdot AD^2 - 2 \cdot AD^2 \cdot \frac{1}{2}\)
\(169 = 2 \cdot AD^2 - AD^2\)
\(AD^2 = 169\)
\(AD = 13\)
Теперь рассмотрим треугольник ADC. Применим теорему косинусов к нему:
\(AC^2 = AD^2 + DC^2 - 2 \cdot AD \cdot DC \cdot \cos(90^\circ)\)
\(AC^2 = 13^2 + 15^2\)
\(AC^2 = 169 + 225\)
\(AC^2 = 394\)
\(AC = \sqrt{394}\)
\(AC \approx 19.85\)
Таким образом, длина отрезка AC равна приблизительно 19.85.
Известно, что в треугольнике ADB у нас есть два равных отрезка AD = DB, а угол между ними равен 60°. Тогда по теореме косинусов для треугольника ADB:
\(AB^2 = AD^2 + DB^2 - 2 \cdot AD \cdot DB \cdot \cos(60^\circ)\)
Подставляя известные значения, получаем:
\(13^2 = AD^2 + AD^2 - 2 \cdot AD^2 \cdot \cos(60^\circ)\)
\(169 = 2 \cdot AD^2 - 2 \cdot AD^2 \cdot \frac{1}{2}\)
\(169 = 2 \cdot AD^2 - AD^2\)
\(AD^2 = 169\)
\(AD = 13\)
Теперь рассмотрим треугольник ADC. Применим теорему косинусов к нему:
\(AC^2 = AD^2 + DC^2 - 2 \cdot AD \cdot DC \cdot \cos(90^\circ)\)
\(AC^2 = 13^2 + 15^2\)
\(AC^2 = 169 + 225\)
\(AC^2 = 394\)
\(AC = \sqrt{394}\)
\(AC \approx 19.85\)
Таким образом, длина отрезка AC равна приблизительно 19.85.
0
·
Хороший ответ
27 ноября 2024 15:36
Остались вопросы?
Еще вопросы по категории Геометрия
Один из углов, образовавшихся при пересечении двух прямых, равен 151(градусов). Найдите градусные меры остальных углов....
сумма гипотенузы СЕ и катета СD прямоугольного треугольника CDE равна 31см,а их разность равна 3см.Найдите расстояние от вершины С до прямой DE....
периметр равнобедренной трапеции равен 28 см, большее основание равно 10 см. Диагональ трапеции делит ее острый угол пополам. Найдите длину меньше осн...
Найдите площадь треугольника, вершины которого имеют координаты (0;0), (10;7), (7;10)....
Площади двух подобных треугольников равны 16 см2 и 25 см2. Ода из сторон первого треугольника равна 2 см.Чему равна сходственная ей сторона другого тр...