Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
To solve the quadratic equation \(9x^2 - 7x - 2 = 0\), we can use the quadratic formula:
For an equation of the form \(ax^2 + bx + c = 0\), the solutions are given by:
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
In this case, \(a = 9\), \(b = -7\), and \(c = -2\). Substituting these values into the formula, we get:
\[x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(9)(-2)}}{2(9)}\]
\[x = \frac{7 \pm \sqrt{49 + 72}}{18}\]
\[x = \frac{7 \pm \sqrt{121}}{18}\]
\[x = \frac{7 \pm 11}{18}\]
So the solutions are:
\[x_1 = \frac{7 + 11}{18} = \frac{18}{18} = 1\]
\[x_2 = \frac{7 - 11}{18} = \frac{-4}{18} = -\frac{2}{9}\]
Therefore, the solutions to the equation \(9x^2 - 7x - 2 = 0\) are \(x = 1\) and \(x = -\frac{2}{9}\).
For an equation of the form \(ax^2 + bx + c = 0\), the solutions are given by:
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
In this case, \(a = 9\), \(b = -7\), and \(c = -2\). Substituting these values into the formula, we get:
\[x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(9)(-2)}}{2(9)}\]
\[x = \frac{7 \pm \sqrt{49 + 72}}{18}\]
\[x = \frac{7 \pm \sqrt{121}}{18}\]
\[x = \frac{7 \pm 11}{18}\]
So the solutions are:
\[x_1 = \frac{7 + 11}{18} = \frac{18}{18} = 1\]
\[x_2 = \frac{7 - 11}{18} = \frac{-4}{18} = -\frac{2}{9}\]
Therefore, the solutions to the equation \(9x^2 - 7x - 2 = 0\) are \(x = 1\) and \(x = -\frac{2}{9}\).
0
·
Хороший ответ
11 декабря 2024 12:36
Остались вопросы?
Еще вопросы по категории Алгебра
Ребят, спасайте.... найти производную функции: y= arctg x - arcctg x...
Дана функция у = -х2 - 4х + 5 . Вычислите значения этой функции при х = -2 и х = -6 . Выберите один ответ: 2 4 -1 -3...
Найдите два последовательных нечетных числа. если их произведение ровно 1)255 2)399...
Помогите решить уравнение: √3 cos3x+sin3x-cosx=√3 sinx...
Решите предел пожалуйста lim n, стремится к бесконечности, (2n+1)^2(числитель)/(2n-1)(n+2)(знаменатель)...