Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
11 декабря 2024 18:08
657
В равнобедренном треугольнике ABC с основанием AC на сторонах AB и BC отмечены соответственно точки M и N так, что угол ACM равен углу CAN. Докажите что BO перпендикуляр MN, где O - точка пересечения AN и CM
1
ответ
Для доказательства того, что отрезок BO перпендикулярен отрезку MN, докажем, что треугольники BMO и BNO подобны.
Из условия задачи у нас имеется:
1. Угол ACM равен углу CAN.
2. Треугольник ABC - равнобедренный, значит, угол ABC равен углу ACB.
Так как угол ACM равен углу CAN, то угол BAN равен углу CAM, и угол ABC равен углу ACB. Таким образом, углы BAN и ABC равны, что означает, что треугольники BAN и BAC подобны.
Теперь рассмотрим треугольники BMO и BNO. Угол BMO равен углу BNO, так как они соответственные углы параллельных прямых MN и AC. Угол BOM равен углу BON, так как треугольник ABC равнобедренный. Таким образом, у треугольников BMO и BNO равны соответственные углы, следовательно, по признаку угловой подобности треугольники BMO и BNO подобны.
Из подобия треугольников BMO и BNO следует, что отрезок BO делит стороны треугольников в одном и том же отношении. Так как точка O - точка пересечения диагоналей треугольника ABC, то отрезок BO является медианой треугольника ABC, и, следовательно, проходит через точку пересечения диагоналей. Таким образом, отрезок BO перпендикулярен отрезку MN.
Из условия задачи у нас имеется:
1. Угол ACM равен углу CAN.
2. Треугольник ABC - равнобедренный, значит, угол ABC равен углу ACB.
Так как угол ACM равен углу CAN, то угол BAN равен углу CAM, и угол ABC равен углу ACB. Таким образом, углы BAN и ABC равны, что означает, что треугольники BAN и BAC подобны.
Теперь рассмотрим треугольники BMO и BNO. Угол BMO равен углу BNO, так как они соответственные углы параллельных прямых MN и AC. Угол BOM равен углу BON, так как треугольник ABC равнобедренный. Таким образом, у треугольников BMO и BNO равны соответственные углы, следовательно, по признаку угловой подобности треугольники BMO и BNO подобны.
Из подобия треугольников BMO и BNO следует, что отрезок BO делит стороны треугольников в одном и том же отношении. Так как точка O - точка пересечения диагоналей треугольника ABC, то отрезок BO является медианой треугольника ABC, и, следовательно, проходит через точку пересечения диагоналей. Таким образом, отрезок BO перпендикулярен отрезку MN.
0
·
Хороший ответ
11 декабря 2024 18:09
Остались вопросы?
Еще вопросы по категории Геометрия
2 небольшие задачки по геометрии...
Из точки М проведен перпендикуляр МД, равный 6 см, плоскости квадрата АВСД. Наклонная МВ образует с плоскостью квадрата угол 60º. а) Док-ть, что треуг...
В прямоугольной трапеции ABCD(угол A=90°) известно, что AB=4см, AD=15 см, BC=12см. Найдите величину |вектор AB- вектор AD+ вектор BC|....
Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высота параллелепипеда равна 10 см. Найдите большую диагональ параллел...
две стороны треугольника равны 5 см и 7 см,угол между ними равен 60 градусов.найти третью сторону треугольника...