Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
11 декабря 2024 18:08
396
В равнобедренном треугольнике ABC с основанием AC на сторонах AB и BC отмечены соответственно точки M и N так, что угол ACM равен углу CAN. Докажите что BO перпендикуляр MN, где O - точка пересечения AN и CM
1
ответ
Для доказательства того, что отрезок BO перпендикулярен отрезку MN, докажем, что треугольники BMO и BNO подобны.
Из условия задачи у нас имеется:
1. Угол ACM равен углу CAN.
2. Треугольник ABC - равнобедренный, значит, угол ABC равен углу ACB.
Так как угол ACM равен углу CAN, то угол BAN равен углу CAM, и угол ABC равен углу ACB. Таким образом, углы BAN и ABC равны, что означает, что треугольники BAN и BAC подобны.
Теперь рассмотрим треугольники BMO и BNO. Угол BMO равен углу BNO, так как они соответственные углы параллельных прямых MN и AC. Угол BOM равен углу BON, так как треугольник ABC равнобедренный. Таким образом, у треугольников BMO и BNO равны соответственные углы, следовательно, по признаку угловой подобности треугольники BMO и BNO подобны.
Из подобия треугольников BMO и BNO следует, что отрезок BO делит стороны треугольников в одном и том же отношении. Так как точка O - точка пересечения диагоналей треугольника ABC, то отрезок BO является медианой треугольника ABC, и, следовательно, проходит через точку пересечения диагоналей. Таким образом, отрезок BO перпендикулярен отрезку MN.
Из условия задачи у нас имеется:
1. Угол ACM равен углу CAN.
2. Треугольник ABC - равнобедренный, значит, угол ABC равен углу ACB.
Так как угол ACM равен углу CAN, то угол BAN равен углу CAM, и угол ABC равен углу ACB. Таким образом, углы BAN и ABC равны, что означает, что треугольники BAN и BAC подобны.
Теперь рассмотрим треугольники BMO и BNO. Угол BMO равен углу BNO, так как они соответственные углы параллельных прямых MN и AC. Угол BOM равен углу BON, так как треугольник ABC равнобедренный. Таким образом, у треугольников BMO и BNO равны соответственные углы, следовательно, по признаку угловой подобности треугольники BMO и BNO подобны.
Из подобия треугольников BMO и BNO следует, что отрезок BO делит стороны треугольников в одном и том же отношении. Так как точка O - точка пересечения диагоналей треугольника ABC, то отрезок BO является медианой треугольника ABC, и, следовательно, проходит через точку пересечения диагоналей. Таким образом, отрезок BO перпендикулярен отрезку MN.
0
·
Хороший ответ
11 декабря 2024 18:09
Остались вопросы?
Еще вопросы по категории Геометрия
Какие из следующих утверждений верны? 1.Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны. 2.Вписанные углы, опирающиеся на одну и т...
Векторы называется равными, если их длины равны...
Построить угол 30 градусов используя лишь циркуль и линейку-БЕЗ ТРАНСПОРТИРА!!!!...
Выполните действия : 1 ) 5 ° 48' + 7 ° 35' 2 ) 32 ° 17' - 8 ° 45'....
Медиана прямоугольного треугольника,проведённая к гипотенузе,разбивает его на два треугольника с периметрами 16 см и 18см. Найдите длины сторон треуго...