Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
11 декабря 2024 18:08
146
В равнобедренном треугольнике ABC с основанием AC на сторонах AB и BC отмечены соответственно точки M и N так, что угол ACM равен углу CAN. Докажите что BO перпендикуляр MN, где O - точка пересечения AN и CM
1
ответ
Для доказательства того, что отрезок BO перпендикулярен отрезку MN, докажем, что треугольники BMO и BNO подобны.
Из условия задачи у нас имеется:
1. Угол ACM равен углу CAN.
2. Треугольник ABC - равнобедренный, значит, угол ABC равен углу ACB.
Так как угол ACM равен углу CAN, то угол BAN равен углу CAM, и угол ABC равен углу ACB. Таким образом, углы BAN и ABC равны, что означает, что треугольники BAN и BAC подобны.
Теперь рассмотрим треугольники BMO и BNO. Угол BMO равен углу BNO, так как они соответственные углы параллельных прямых MN и AC. Угол BOM равен углу BON, так как треугольник ABC равнобедренный. Таким образом, у треугольников BMO и BNO равны соответственные углы, следовательно, по признаку угловой подобности треугольники BMO и BNO подобны.
Из подобия треугольников BMO и BNO следует, что отрезок BO делит стороны треугольников в одном и том же отношении. Так как точка O - точка пересечения диагоналей треугольника ABC, то отрезок BO является медианой треугольника ABC, и, следовательно, проходит через точку пересечения диагоналей. Таким образом, отрезок BO перпендикулярен отрезку MN.
Из условия задачи у нас имеется:
1. Угол ACM равен углу CAN.
2. Треугольник ABC - равнобедренный, значит, угол ABC равен углу ACB.
Так как угол ACM равен углу CAN, то угол BAN равен углу CAM, и угол ABC равен углу ACB. Таким образом, углы BAN и ABC равны, что означает, что треугольники BAN и BAC подобны.
Теперь рассмотрим треугольники BMO и BNO. Угол BMO равен углу BNO, так как они соответственные углы параллельных прямых MN и AC. Угол BOM равен углу BON, так как треугольник ABC равнобедренный. Таким образом, у треугольников BMO и BNO равны соответственные углы, следовательно, по признаку угловой подобности треугольники BMO и BNO подобны.
Из подобия треугольников BMO и BNO следует, что отрезок BO делит стороны треугольников в одном и том же отношении. Так как точка O - точка пересечения диагоналей треугольника ABC, то отрезок BO является медианой треугольника ABC, и, следовательно, проходит через точку пересечения диагоналей. Таким образом, отрезок BO перпендикулярен отрезку MN.
0
·
Хороший ответ
11 декабря 2024 18:09
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите, чему равна площадь боковой поверхности усеченного конуса, если радиусы его оснований 5 и 9 см, а образующая равна 5 см....
На европа плюс такая песня---тудуду туту ту ту ду ду ду ду ду пж найдите!!!!!!!!!!99 баллов дам...
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=84 и BC=BM . Найдите AH...
Треугольник ABC, вписанный в окружность, делит её на три дуги. Вычисли градусную меру третьей дуги и углы треугольника, если известны две другие дуги:...
Площадь треугольника АВС равна 576 квадратных сантиметров. На стороне АС отмечена точка М так, что АМ:МС=1:2, а на стороне ВС отмечена точка Н так, чт...
Все предметы