Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
20 декабря 2024 10:24
353
точка O - центр основания ABCD правильной четырехугольной пирамиды MABCD. Известно, что MO:AB = 2:3. Точка P - средина отрезка AO. Найдите угол между прямой MP и плоскостью MAD.
задача должна быть решена векторным методом
1
ответ
Для решения задачи воспользуемся векторным методом.
Обозначим векторы:
\(\overrightarrow{OM} = \vec{a}\),
\(\overrightarrow{OA} = \vec{b}\),
\(\overrightarrow{AB} = \vec{c}\),
\(\overrightarrow{AP} = \frac{1}{2} \vec{b}\),
\(\overrightarrow{AM} = \vec{a} - \frac{2}{5} \vec{b}\) (так как \(MO:AB = 2:3\)).
Теперь найдем векторное произведение \(\vec{n} = \vec{c} \times (\vec{a} - \frac{2}{5} \vec{b})\) - это будет нормаль к плоскости MAD.
Так как вектор \(\vec{c}\) лежит в плоскости MAD, то вектор \(\vec{MP}\) будет лежать в плоскости, перпендикулярной \(\vec{n}\). То есть, вектор \(\vec{MP}\) будет коллинеарен \(\vec{n}\).
Теперь найдем угол между векторами \(\vec{MP}\) и \(\vec{n}\) по формуле скалярного произведения: \(\cos{\theta} = \frac{\vec{MP} \cdot \vec{n}}{|\vec{MP}| \cdot |\vec{n}|}\).
Таким образом, мы можем найти угол между прямой MP и плоскостью MAD с помощью векторного метода.
Обозначим векторы:
\(\overrightarrow{OM} = \vec{a}\),
\(\overrightarrow{OA} = \vec{b}\),
\(\overrightarrow{AB} = \vec{c}\),
\(\overrightarrow{AP} = \frac{1}{2} \vec{b}\),
\(\overrightarrow{AM} = \vec{a} - \frac{2}{5} \vec{b}\) (так как \(MO:AB = 2:3\)).
Теперь найдем векторное произведение \(\vec{n} = \vec{c} \times (\vec{a} - \frac{2}{5} \vec{b})\) - это будет нормаль к плоскости MAD.
Так как вектор \(\vec{c}\) лежит в плоскости MAD, то вектор \(\vec{MP}\) будет лежать в плоскости, перпендикулярной \(\vec{n}\). То есть, вектор \(\vec{MP}\) будет коллинеарен \(\vec{n}\).
Теперь найдем угол между векторами \(\vec{MP}\) и \(\vec{n}\) по формуле скалярного произведения: \(\cos{\theta} = \frac{\vec{MP} \cdot \vec{n}}{|\vec{MP}| \cdot |\vec{n}|}\).
Таким образом, мы можем найти угол между прямой MP и плоскостью MAD с помощью векторного метода.
0
·
Хороший ответ
20 декабря 2024 10:27
Остались вопросы?
Еще вопросы по категории Геометрия
На рисунке 104 изображен куб ABCDA1B1C1D1. Укажите прямую пересечения плоскостей ACC1 и DCC1....
отрезок AK - биссектриса треугольника CAE . Через точку K проведена прямая, параллельная стороне CA и пересекающая сторону AE в точке N. Найти углы тр...
AC и BD — диаметры окружности с центром O. Угол ACB равен 79°. Найдите угол AOD. Ответ дайте в градусах....
В правильной четырехугольной пирамиде SABCD основание ABCD - квадрат со стороной 6, а боковое ребро равно 12. На ребре SA отмечена точка М так, что SM...
2. Пусть d - расстояние от центра окружности радиуса r до прямой р. Каково взаимное расположение прямой р и окружности, если: a) r = 10 дм, d = 10 дм;...