Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
20 декабря 2024 10:24
144
точка O - центр основания ABCD правильной четырехугольной пирамиды MABCD. Известно, что MO:AB = 2:3. Точка P - средина отрезка AO. Найдите угол между прямой MP и плоскостью MAD.
задача должна быть решена векторным методом
1
ответ
Для решения задачи воспользуемся векторным методом.
Обозначим векторы:
\(\overrightarrow{OM} = \vec{a}\),
\(\overrightarrow{OA} = \vec{b}\),
\(\overrightarrow{AB} = \vec{c}\),
\(\overrightarrow{AP} = \frac{1}{2} \vec{b}\),
\(\overrightarrow{AM} = \vec{a} - \frac{2}{5} \vec{b}\) (так как \(MO:AB = 2:3\)).
Теперь найдем векторное произведение \(\vec{n} = \vec{c} \times (\vec{a} - \frac{2}{5} \vec{b})\) - это будет нормаль к плоскости MAD.
Так как вектор \(\vec{c}\) лежит в плоскости MAD, то вектор \(\vec{MP}\) будет лежать в плоскости, перпендикулярной \(\vec{n}\). То есть, вектор \(\vec{MP}\) будет коллинеарен \(\vec{n}\).
Теперь найдем угол между векторами \(\vec{MP}\) и \(\vec{n}\) по формуле скалярного произведения: \(\cos{\theta} = \frac{\vec{MP} \cdot \vec{n}}{|\vec{MP}| \cdot |\vec{n}|}\).
Таким образом, мы можем найти угол между прямой MP и плоскостью MAD с помощью векторного метода.
Обозначим векторы:
\(\overrightarrow{OM} = \vec{a}\),
\(\overrightarrow{OA} = \vec{b}\),
\(\overrightarrow{AB} = \vec{c}\),
\(\overrightarrow{AP} = \frac{1}{2} \vec{b}\),
\(\overrightarrow{AM} = \vec{a} - \frac{2}{5} \vec{b}\) (так как \(MO:AB = 2:3\)).
Теперь найдем векторное произведение \(\vec{n} = \vec{c} \times (\vec{a} - \frac{2}{5} \vec{b})\) - это будет нормаль к плоскости MAD.
Так как вектор \(\vec{c}\) лежит в плоскости MAD, то вектор \(\vec{MP}\) будет лежать в плоскости, перпендикулярной \(\vec{n}\). То есть, вектор \(\vec{MP}\) будет коллинеарен \(\vec{n}\).
Теперь найдем угол между векторами \(\vec{MP}\) и \(\vec{n}\) по формуле скалярного произведения: \(\cos{\theta} = \frac{\vec{MP} \cdot \vec{n}}{|\vec{MP}| \cdot |\vec{n}|}\).
Таким образом, мы можем найти угол между прямой MP и плоскостью MAD с помощью векторного метода.
0
·
Хороший ответ
20 декабря 2024 10:27
Остались вопросы?
Еще вопросы по категории Геометрия
Точка F принадлежит отрезку AB.Найдите длину отрезка AF, если FB=5,4см,AB=8,3....
В треугольнике ABC AC=BC AB=8 cos A=0,2 найдите AC. Напишите поподробней, плиз!...
Укажите номера верных утверждений. 1) В тупоугольном треугольнике все углы тупые. 2) В любом параллелограмме диагонали точкой пересечения делятся попо...
радиус основания цилиндра равен 5 см, высота цилиндра равна 12. Площадь полной поверхности цилиндра равна kπ, найдите k...
Какие из следующих утверждений верны? 1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой. 2) Если диагонали...