Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
24 января 2025 10:25
132
Докажите, что четырехугольник ABCD — квадрат, если вершины имеют координаты А(-3; 5; 6), В(1; -5; 7),
C(8; -3; -1) и D(4; 7; -2).
1
ответ
Для того чтобы доказать, что четырехугольник ABCD является квадратом, необходимо проверить, что все стороны четырехугольника равны между собой и что углы между этими сторонами равны 90 градусов.
1. Вычислим длины сторон четырехугольника ABCD, используя формулу длины отрезка между двумя точками в трехмерном пространстве:
AB = √((1 - (-3))^2 + (-5 - 5)^2 + (7 - 6)^2) = √(4^2 + 10^2 + 1^2) = √(16 + 100 + 1) = √117
BC = √((8 - 1)^2 + (-3 + 5)^2 + (-1 - 7)^2) = √(7^2 + 2^2 + (-8)^2) = √(49 + 4 + 64) = √117
CD = √((4 - 8)^2 + (7 + 5)^2 + (-2 - 7)^2) = √((-4)^2 + 12^2 + (-9)^2) = √(16 + 144 + 81) = √241
DA = √((-3 - 4)^2 + (5 - 7)^2 + (6 + 2)^2) = √((-7)^2 + (-2)^2 + 8^2) = √(49 + 4 + 64) = √117
Таким образом, AB = BC = CD = DA = √117.
2. Теперь найдем углы между сторонами четырехугольника ABCD.
Найдем векторы AB, BC, CD и DA:
AB = (1 - (-3), -5 - 5, 7 - 6) = (4, -10, 1)
BC = (8 - 1, -3 - (-5), -1 - 7) = (7, 2, -8)
CD = (4 - 8, 7 - (-3), -2 - 7) = (-4, 10, -9)
DA = (-3 - 4, 5 - 7, 6 - 2) = (-7, -2, 4)
Теперь найдем скалярные произведения векторов AB и BC, BC и CD, CD и DA, DA и AB:
AB·BC = 4*7 + (-10)*2 + 1*(-8) = 28 - 20 - 8 = 0
BC·CD = 7*(-4) + 2*10 + (-8)*(-9) = -28 + 20 + 72 = 64
CD·DA = (-4)*(-7) + 10*(-2) + (-9)*4 = 28 - 20 - 36 = -28
DA·AB = (-7)*4 + (-2)*(-10) + 4*1 = -28 + 20 + 4 = -4
Таким образом, углы между сторонами четырехугольника ABCD не равны 90 градусов.
Исходя из полученных результатов, мы видим, что четырехугольник ABCD не является квадратом, так как не все стороны равны между собой и углы между сторонами не равны 90 градусов.
1. Вычислим длины сторон четырехугольника ABCD, используя формулу длины отрезка между двумя точками в трехмерном пространстве:
AB = √((1 - (-3))^2 + (-5 - 5)^2 + (7 - 6)^2) = √(4^2 + 10^2 + 1^2) = √(16 + 100 + 1) = √117
BC = √((8 - 1)^2 + (-3 + 5)^2 + (-1 - 7)^2) = √(7^2 + 2^2 + (-8)^2) = √(49 + 4 + 64) = √117
CD = √((4 - 8)^2 + (7 + 5)^2 + (-2 - 7)^2) = √((-4)^2 + 12^2 + (-9)^2) = √(16 + 144 + 81) = √241
DA = √((-3 - 4)^2 + (5 - 7)^2 + (6 + 2)^2) = √((-7)^2 + (-2)^2 + 8^2) = √(49 + 4 + 64) = √117
Таким образом, AB = BC = CD = DA = √117.
2. Теперь найдем углы между сторонами четырехугольника ABCD.
Найдем векторы AB, BC, CD и DA:
AB = (1 - (-3), -5 - 5, 7 - 6) = (4, -10, 1)
BC = (8 - 1, -3 - (-5), -1 - 7) = (7, 2, -8)
CD = (4 - 8, 7 - (-3), -2 - 7) = (-4, 10, -9)
DA = (-3 - 4, 5 - 7, 6 - 2) = (-7, -2, 4)
Теперь найдем скалярные произведения векторов AB и BC, BC и CD, CD и DA, DA и AB:
AB·BC = 4*7 + (-10)*2 + 1*(-8) = 28 - 20 - 8 = 0
BC·CD = 7*(-4) + 2*10 + (-8)*(-9) = -28 + 20 + 72 = 64
CD·DA = (-4)*(-7) + 10*(-2) + (-9)*4 = 28 - 20 - 36 = -28
DA·AB = (-7)*4 + (-2)*(-10) + 4*1 = -28 + 20 + 4 = -4
Таким образом, углы между сторонами четырехугольника ABCD не равны 90 градусов.
Исходя из полученных результатов, мы видим, что четырехугольник ABCD не является квадратом, так как не все стороны равны между собой и углы между сторонами не равны 90 градусов.
0
·
Хороший ответ
24 января 2025 10:27
Остались вопросы?
Еще вопросы по категории Математика
Сколько чисел указано в задании?...
Какое число получится, если возвести 10 в 15-ю степень?...
5/6 в десятичную дробь...
постройте угол 120градусов из вершины угла провидите луч так чтобы один из образававшихся углов что бы один был в 2раза больше другого...
Самолёт летел до посадки 4 ч и пролетел 2520 км.После этого он пролетел к месту назначения ещё 2700 км за 5 ч. Узнай среднюю скорость самолёта за врем...