Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
10 февраля 2025 05:33
254
Расстояние между серединами диагоналей трапеции равно 5, а её боковые стороны равны 6 и 8. Найдите расстояние между серединами оснований
1
ответ
Для решения этой задачи воспользуемся свойством трапеции, что линия, соединяющая середины оснований трапеции, параллельна боковым сторонам и равна по длине отрезку, соединяющему середины диагоналей.
Обозначим расстояние между серединами оснований как х. Тогда по условию задачи расстояние между серединами диагоналей равно 5, а боковые стороны трапеции равны 6 и 8.
Пусть AB и CD - основания трапеции, а M и N - середины диагоналей. Тогда AM = 5, AB = 8, CD = 6.
Так как AM = MN = 5, то треугольник AMN - равнобедренный. Значит, угол AMN = угол ANM.
Теперь рассмотрим прямоугольный треугольник ABM. По теореме Пифагора для него:
AB^2 = AM^2 + MB^2
8^2 = 5^2 + MB^2
64 = 25 + MB^2
MB^2 = 39
MB = √39
Теперь рассмотрим прямоугольный треугольник MBC. По теореме Пифагора для него:
MC^2 = MB^2 + BC^2
MC^2 = 39 + 36
MC = √75
MC = 5√3
Так как MC = ND, где D - середина CD, то ND = 5√3.
Наконец, рассмотрим прямоугольный треугольник NDC. По теореме Пифагора для него:
ND^2 = NC^2 + CD^2
(5√3)^2 = NC^2 + 6^2
75 = NC^2 + 36
NC^2 = 39
NC = √39
Таким образом, расстояние между серединами оснований трапеции равно √39.
Обозначим расстояние между серединами оснований как х. Тогда по условию задачи расстояние между серединами диагоналей равно 5, а боковые стороны трапеции равны 6 и 8.
Пусть AB и CD - основания трапеции, а M и N - середины диагоналей. Тогда AM = 5, AB = 8, CD = 6.
Так как AM = MN = 5, то треугольник AMN - равнобедренный. Значит, угол AMN = угол ANM.
Теперь рассмотрим прямоугольный треугольник ABM. По теореме Пифагора для него:
AB^2 = AM^2 + MB^2
8^2 = 5^2 + MB^2
64 = 25 + MB^2
MB^2 = 39
MB = √39
Теперь рассмотрим прямоугольный треугольник MBC. По теореме Пифагора для него:
MC^2 = MB^2 + BC^2
MC^2 = 39 + 36
MC = √75
MC = 5√3
Так как MC = ND, где D - середина CD, то ND = 5√3.
Наконец, рассмотрим прямоугольный треугольник NDC. По теореме Пифагора для него:
ND^2 = NC^2 + CD^2
(5√3)^2 = NC^2 + 6^2
75 = NC^2 + 36
NC^2 = 39
NC = √39
Таким образом, расстояние между серединами оснований трапеции равно √39.
0
·
Хороший ответ
10 февраля 2025 05:36
Остались вопросы?
Еще вопросы по категории Математика
Какие слова относятся к 1 склонению?...
купили 30кг белой краски , а синей в 7 раз больше. На сколько кг купили синей краски, чем белой?(напишите схему на листочке. отправте сюда пожалуйста....
Выполните умножение: а) 9/10 * 5/6; д) 57/37 * 74/86; и) 5/13 * 39; н) 2 14/15 * 6 6/11; б) 6/25 * 20/21; е) 81/115 * 46/81; к) 5 * 2 1/5 о) 2 2/25 *...
5х*х=? Сколько будет...
Сколько центнеров в одной тонне по классификации 4 класса?...