Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
30 ноября 2022 02:32
1014
Найдите площадь ромба, сторона которого равна 17см, а разность диагоналей - 14см
1
ответ
Дан ромб, сторона которого равна 17 см, а разность диагоналей - 14 см.
Диагонали d1 и d2 ромба перпендикулярны, образуют 4 треугольника.
По заданию d1 - d2 = 14. Разделим на 2 обе части.
(d1/2) - (d2/2) = 7.
Обозначим (d1/2) за х - это катет треугольника.
Второй катет равен х - 7.
По Пифагору a² = (d1/2)²+ (d2/2)².
289 = x² + (x - 7)².
289 = x² + x² - 14x + 49.
2x² - 14x = 240 разделим на 2 и получаем квадратное уравнение.
х² - 7х - 120 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)^2-4*1*(-120)=49-4*(-120)=49-(-4*120)=49-(-480)=49+480=529;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√529-(-7))/(2*1)=(23-(-7))/2=(23+7)/2=30/2=15;
x_2=(-√529-(-7))/(2*1)=(-23-(-7))/2=(-23+7)/2=-16/2=-8.
Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см.
Площадь ромба равна:
S = 4*(1/2)*15*8 = 15*16 = 240 см².
Диагонали d1 и d2 ромба перпендикулярны, образуют 4 треугольника.
По заданию d1 - d2 = 14. Разделим на 2 обе части.
(d1/2) - (d2/2) = 7.
Обозначим (d1/2) за х - это катет треугольника.
Второй катет равен х - 7.
По Пифагору a² = (d1/2)²+ (d2/2)².
289 = x² + (x - 7)².
289 = x² + x² - 14x + 49.
2x² - 14x = 240 разделим на 2 и получаем квадратное уравнение.
х² - 7х - 120 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)^2-4*1*(-120)=49-4*(-120)=49-(-4*120)=49-(-480)=49+480=529;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√529-(-7))/(2*1)=(23-(-7))/2=(23+7)/2=30/2=15;
x_2=(-√529-(-7))/(2*1)=(-23-(-7))/2=(-23+7)/2=-16/2=-8.
Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см.
Площадь ромба равна:
S = 4*(1/2)*15*8 = 15*16 = 240 см².
0
·
Хороший ответ
2 декабря 2022 02:32
Остались вопросы?
Еще вопросы по категории Геометрия
1. Диагонали прямоугольника ABCD пересекаются в точке О. Найдите угол между диагоналями, если угол ABO равен 50 градусов....
Определите, какая тригонометрическая функция угла K выражается дробью 1)KN/KM, 2)MN/KN, 3) MN/KM, 4)KN/MN...
Боковая сторона равнобокой трапеции равна 103 см, а острый yrox - 30 deg Найдите площадь этой трапеции, если известно, что в неё...
Параллельные плоскости альфа и бета пересекают сторону АВ угла ВАС соответственно в точках А1 и А2, а сторону АС этого угла в В1 и В2. Найти АА1 если...
Осевая симметрия. нарисуйте рисунок легкий с этой симметрией и укажите сколько тут осей симметрии и где центр симметрии пж...помогитеее...