Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 19:35
1396
Радиус шара равен R. определите объем шарового сектора, если дуга в его осевом сечении равна 60°
1
ответ
Объём шарового сектора определяется по формуле:
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
0
·
Хороший ответ
8 декабря 2022 19:35
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC угол C равен 90°, АС = 20 , tgА = 9/40 Найдите АВ...
Запишите уравнение прямой, проходящей через точку M 0 (−6,−17) �0-6,-17 параллельно прямой y=4x+19. �=4�+19. В ответ вве...
диагональ правильной четырехугольной призмы наклонена к плоскости основания под углом 60 градусов. найти площадь сечения,проходящего через сторону ниж...
Даны координаты вершины треугольника ABC. А(-6;1), В(2;4),С(2;-2) Докажите, что треугольника АВС равнобедренный и найдите высоту треугольника, проведе...
Помогите решить задачу...