Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 19:35
1509
Радиус шара равен R. определите объем шарового сектора, если дуга в его осевом сечении равна 60°
1
ответ
Объём шарового сектора определяется по формуле:
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
0
·
Хороший ответ
8 декабря 2022 19:35
Остались вопросы?
Еще вопросы по категории Геометрия
прямая MN является секущей для прямых AB и CD (М принадлежит АВ, N принадлежит CD). Угол AMN равен 75°. При каком значении угла СNM прямые АВ и CD мог...
В треугольнике ABC Один правильный ответ* 1. AB * sin C = AC* sin B 2. AB *sin A=AC * sin B 3. AB * sin B = AC * sin C...
Высота правильной треугольной пирамиды равна а(корень из 3), радиус окружности, описанной около ее основания, 2а.найдите: а) апофему пирамиды б)угол...
Вершины треугольника АВС лежат на сфере радиуса 17,12 см. Найдите расстояние от центра сферы до плоскости треугольника, если АВ= 16 см, ВС=30 см, АС-...
Площадь равностороннего треугольника, вписанного в окружность, равна Q^2. Доказать, что радиус окружности равен (2Q^4√3)/3...