Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
6 декабря 2022 19:35
1287
Радиус шара равен R. определите объем шарового сектора, если дуга в его осевом сечении равна 60°
1
ответ
Объём шарового сектора определяется по формуле:
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
0
·
Хороший ответ
8 декабря 2022 19:35
Остались вопросы?
Еще вопросы по категории Геометрия
Свойства параллельных плоскостей...
На тетрадном листочке в клеточку изображён треугольник ABC. vpr_m_3_8_121.svg Найди высоту, опущенную из точки B к стороне AC, если сторона клетки р...
Решите, пожалуйста...
В остроугольном треугольнике: 1. все углы острые 2. один тупой угол, остальные острые 3. один прямой угол, остальные острые 4. менее трех острых углов...
Как найти sin а, зная cos a?...