Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
6 декабря 2022 19:35
1332
Радиус шара равен R. определите объем шарового сектора, если дуга в его осевом сечении равна 60°
1
ответ
Объём шарового сектора определяется по формуле:
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
0
·
Хороший ответ
8 декабря 2022 19:35
Остались вопросы?
Еще вопросы по категории Геометрия
Дан параллелепипед ABCDA1B1C1D1.Постройте сечение параллелепипеда плоскостью проходящей через середину ребра АВ||плоскости DBB1. Друзья помогите с реш...
Квадрат вписан в окружность диаметра 8. Периметр квадрата равен: 1) 32 2)16 2^ 3)16 4) 32 2^...
1)В прямоугольном треугольнике des угол s равен 30°,угол E равен 90°.Найдите гипотенузу DS этого треугольника если катет DE равен 6,5 см 2)Угол при ве...
диагональ осевого сечения цилиндра равна 8 см и составляет с образующей угол 60 градусов. найдите площадь полной поверхности цилиндра....
Найдите высоту ромба, сторона которого равна корень из 5, а острый угол равен 60 градусов!...