Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 19:35
1471
Радиус шара равен R. определите объем шарового сектора, если дуга в его осевом сечении равна 60°
1
ответ
Объём шарового сектора определяется по формуле:
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).
0
·
Хороший ответ
8 декабря 2022 19:35
Остались вопросы?
Еще вопросы по категории Геометрия
Начертите неразвернутый угол АОВ и проведите: а)луч ОС , который делит угол АОВ на два угла; б) луч ОД , который не делит луч АОС на два угла....
ящик, имеющий Форму куба с ребром 30см без одной грани ,нужно покрасить со всех сторон снаружи. найдите площадь поверхности, которую необходимо покрас...
В ромбе одна из диагоналей равна стороне найти углы ромба...
Вообще геометрию не понимаю (( Объясните как решать задачи ( Я в 7 классе )...
через вершину а квадрата abcd проведена прямая am ,не лежащая в плоскости квадрата .доказать ,что прямая bc параллельна пооскости mad...