Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
10 декабря 2022 18:34
870
в треугольнике abc ab=bc=10см ac=12см через точку b к плоскости треугольника проведен перпендикуляр bd длинной 15 см. а) укажите проекцию треугольника dbc на плоскость abc б) найдите расстояние от точки D до прямой ac
1
ответ
Проведём из точки d наклонные da и dc.
а) Проекция тр-ка dbc на плоскость abc - сторона bc тр-ка аbc, т.к. плоскость dbc перпендикулярна плоскости abc, а линией их пересечения является bc.
б) Тр-к adc - равнобедренный, в нём медиана dk является и высотой, поэтому является расстоянием от точки d до прямой ас.
Соединим тоски b и k. bk является расстоянием от точки b до прямой ас в тр-ке abc.
Тр-к abc равнобедренный, поэтому bk = √(ab² - (0.5ac)²)
bk = √(10² - (0.5·12)²) = √(100 - 36) = √(64) = 8
Тр-к dbk - прямоугольный с гипотенузой dk, поэтому
dk = √(db² + bk²) = √(15² + 8²) = √(225 + 64) = √289 = 17
Ответ: 17см
а) Проекция тр-ка dbc на плоскость abc - сторона bc тр-ка аbc, т.к. плоскость dbc перпендикулярна плоскости abc, а линией их пересечения является bc.
б) Тр-к adc - равнобедренный, в нём медиана dk является и высотой, поэтому является расстоянием от точки d до прямой ас.
Соединим тоски b и k. bk является расстоянием от точки b до прямой ас в тр-ке abc.
Тр-к abc равнобедренный, поэтому bk = √(ab² - (0.5ac)²)
bk = √(10² - (0.5·12)²) = √(100 - 36) = √(64) = 8
Тр-к dbk - прямоугольный с гипотенузой dk, поэтому
dk = √(db² + bk²) = √(15² + 8²) = √(225 + 64) = √289 = 17
Ответ: 17см
0
·
Хороший ответ
12 декабря 2022 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
Сколько градусов имеет ромб...
Найдите площадь кругового сектора,если градусная мера его дуги равна 120,а радиус круга равен 12см...
Большая сторона параллелограмма равна 15 см,а периметр-50 см.Найди меньшую сторону...
Двор состоит из пяти равных квадратов. Определи площадь двора в квадратных метрах, если периметр двора — 2640 см....
Стороны угла A пересечены параллельными прямыми A1B1, A2B2, A3B3, A4B4 так, что AA1 = A1A2 = A2A3 = A3A4. Найдите длину отрезка B1B2, если AB4 = 36 ...